31 research outputs found

    Issues to Consider in Converting to Digital Mammography

    Get PDF
    This paper will outline the reasons that many radiology practices are converting to digital mammography. In addition, we will provide basic information on the issues that must be considered in making the transformation. These include technical matters regarding image display, storage and retrieval, as well as clinical and ergonomic considerations

    Assessing the Standalone Sensitivity of Computer-aided Detection (CADe) with Cancer Cases from the Digital Mammographic Imaging Screening Trial (DMIST)

    Get PDF
    To assess the sensitivities and false detection rates of two CADe systems when applied to digital or screen-film mammograms in detecting the known breast cancer cases from the DMIST breast cancer screening population

    Impact of Muscle Measures on Outcome in Patients Receiving Endocrine Therapy for Metastatic Breast Cancer: Analysis of ECOG-ACRIN E2112

    No full text
    Background: Observational data investigating the relationship between body habitus and outcomes in breast cancer have been variable and inconsistent, largely centered in the curative setting and focused on weight-based metrics. This study evaluated the impact of muscle measures on outcomes in patients with metastatic breast cancer receiving endocrine-based therapy. Methods: Baseline CT scans were collected from ECOG-ACRIN E2112, a randomized phase III placebo-controlled study of exemestane with or without entinostat. A CT cross-sectional image at the L3 level was extracted to obtain skeletal muscle mass and attenuation. Low muscle mass (LMM) was defined as skeletal muscle index <41 cm2/m2 and low muscle attenuation (LMA) as muscle density <25 HU or <33 HU if overweight/obese by body mass index (BMI). Multivariable Cox proportional hazard models determined the association between LMM or LMA and progression-free survival (PFS) and overall survival (OS). Correlations between LMM, LMA, and patient-reported outcomes were determined using 2-sample t tests. Results: Analyzable CT scans and follow-up data were available for 540 of 608 patients. LMM was present in 39% (n=212) of patients and LMA in 56% (n=301). Those with LMA were more likely to have obesity and worse performance status. LMM was not associated with survival (PFS hazard ratio [HR]: 1.13, P=.23; OS HR: 1.05, P=.68), nor was LMA (PFS HR: 1.01, P=.93; OS HR: 1.00, P=.99). BMI was not associated with survival. LMA, but not LMM, was associated with increased frequency of patient-reported muscle aches. Conclusions: Both low muscle mass and density are prevalent in patients with hormone receptor-positive metastatic breast cancer. Muscle measures correlated with obesity and performance status; however, neither muscle mass nor attenuation were associated with prognosis. Further work is needed to refine body composition measurements and select optimal cutoffs with meaningful endpoints in specific breast cancer populations, particularly those living with metastatic disease

    Repeatability and Reproducibility of ADC Histogram Metrics from the ACRIN 6698 Breast Cancer Therapy Response Trial

    No full text
    Mean tumor apparent diffusion coefficient (ADC) of breast cancer showed excellent repeatability but only moderate predictive power for breast cancer therapy response in the ACRIN 6698 multicenter imaging trial. Previous single-center studies have shown improved predictive performance for alternative ADC histogram metrics related to low ADC dense tumor volume. Using test/retest (TT/RT) 4 b-value diffusion-weighted imaging acquisitions from pretreatment or early-treatment time-points on 71 ACRIN 6698 patients, we evaluated repeatability for ADC histogram metrics to establish confidence intervals and inform predictive models for future therapy response analysis. Histograms were generated using regions of interest (ROIs) defined separately for TT and RT diffusion-weighted imaging. TT/RT repeatability and intra- and inter-reader reproducibility (on a 20-patient subset) were evaluated using wCV and Bland–Altman limits of agreement for histogram percentiles, low-ADC dense tumor volumes, and fractional volumes (normalized to total histogram volume). Pearson correlation was used to reveal connections between metrics and ROI variability across the sample cohort. Low percentiles (15th and 25th) were highly repeatable and reproducible, wCV &lt; 8.1%, comparable to mean ADC values previously reported. Volumetric metrics had higher wCV values in all cases, with fractional volumes somewhat better but at least 3 times higher than percentile wCVs. These metrics appear most sensitive to ADC changes around a threshold of 1.2 μm2/ms. Volumetric results were moderately to strongly correlated with ROI size. In conclusion, Lower histogram percentiles have comparable repeatability to mean ADC, while ADC-thresholded volumetric measures currently have poor repeatability but may benefit from improvements in ROI techniques

    Impact of Alternate b-Value Combinations and Metrics on the Predictive Performance and Repeatability of Diffusion-Weighted MRI in Breast Cancer Treatment: Results from the ECOG-ACRIN A6698 Trial.

    No full text
    In diffusion-weighted MRI (DW-MRI), choice of b-value influences apparent diffusion coefficient (ADC) values by probing different aspects of the tissue microenvironment. As a secondary analysis of the multicenter ECOG-ACRIN A6698 trial, the purpose of this study was to investigate the impact of alternate b-value combinations on the performance and repeatability of tumor ADC as a predictive marker of breast cancer treatment response. The final analysis included 210 women who underwent standardized 4-b-value DW-MRI (b = 0/100/600/800 s/mm2) at multiple timepoints during neoadjuvant chemotherapy treatment and a subset (n = 71) who underwent test-retest scans. Centralized tumor ADC and perfusion fraction (fp) measures were performed using variable b-value combinations. Prediction of pathologic complete response (pCR) based on the mid-treatment/12-week percent change in each metric was estimated by area under the receiver operating characteristic curve (AUC). Repeatability was estimated by within-subject coefficient of variation (wCV). Results show that two-b-value ADC calculations provided non-inferior predictive value to four-b-value ADC calculations overall (AUCs = 0.60-0.61 versus AUC = 0.60) and for HR+/HER2- cancers where ADC was most predictive (AUCs = 0.75-0.78 versus AUC = 0.76), p &lt; 0.05. Using two b-values (0/600 or 0/800 s/mm2) did not reduce ADC repeatability over the four-b-value calculation (wCVs = 4.9-5.2% versus 5.4%). The alternate metrics ADCfast (b ≤ 100 s/mm2), ADCslow (b ≥ 100 s/mm2), and fp did not improve predictive performance (AUCs = 0.54-0.60, p = 0.08-0.81), and ADCfast and fp demonstrated the lowest repeatability (wCVs = 6.71% and 12.4%, respectively). In conclusion, breast tumor ADC calculated using a simple two-b-value approach can provide comparable predictive value and repeatability to full four-b-value measurements as a marker of treatment response
    corecore