48 research outputs found

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics

    Get PDF
    Contains fulltext : 152245.pdf (publisher's version ) (Open Access)Psychiatric disorders are increasingly being recognised as having a biological basis, but their diagnosis is made exclusively behaviourally. A promising approach for 'biomarker' discovery has been based on pattern recognition methods applied to neuroimaging data, which could yield clinical utility in future. In this review we survey the literature on pattern recognition for making diagnostic predictions in psychiatric disorders, and evaluate progress made in translating such findings towards clinical application. We evaluate studies on many criteria, including data modalities used, the types of features extracted and algorithm applied. We identify problems common to many studies, such as a relatively small sample size and a primary focus on estimating generalisability within a single study. Furthermore, we highlight challenges that are not widely acknowledged in the field including the importance of accommodating disease prevalence, the necessity of more extensive validation using large carefully acquired samples, the need for methodological innovations to improve accuracy and to discriminate between multiple disorders simultaneously. Finally, we identify specific clinical contexts in which pattern recognition can add value in the short to medium term

    Functional corticostriatal connection topographies predict goal directed behaviour in humans

    No full text
    Item does not contain fulltextAnatomical tracing studies in non-human primates have suggested that corticostriatal connectivity is topographically organized: nearby locations in striatum are connected with nearby locations in cortex. The topographic organization of corticostriatal connectivity is thought to underpin many goal-directed behaviours, but these topographies have not been completely characterised in humans and their relationship to uniquely human behaviours remains to be fully determined. Instead, the dominant approach employs parcellations that cannot model the continuous nature of the topography, nor accommodate overlapping cortical projections in the striatum. Here, we employ a different approach to studying human corticostriatal circuitry: we estimate smoothly-varying and spatially overlapping 'connection topographies' from resting state fMRI. These correspond exceptionally well with and extend the topographies predicted from primate tracing studies. We show that striatal topography is preserved in regions not previously known to have topographic connections with the striatum and that many goal-directed behaviours can be mapped precisely onto individual variations in the spatial layout of striatal connectivity

    Frequency-specific directed interactions in the human brain network for language

    Get PDF
    Contains fulltext : 175222.pdf (publisher's version ) (Open Access)The brain's remarkable capacity for language requires bidirectional interactions between functionally specialized brain regions. We used magnetoencephalography to investigate interregional interactions in the brain network for language while 102 participants were reading sentences. Using Granger causality analysis, we identified inferior frontal cortex and anterior temporal regions to receive widespread input and middle temporal regions to send widespread output. This fits well with the notion that these regions play a central role in language processing. Characterization of the functional topology of this network, using data-driven matrix factorization, which allowed for partitioning into a set of subnetworks, revealed directed connections at distinct frequencies of interaction. Connections originating from temporal regions peaked at alpha frequency, whereas connections originating from frontal and parietal regions peaked at beta frequency. These findings indicate that the information flow between language-relevant brain areas, which is required for linguistic processing, may depend on the contributions of distinct brain rhythms.6 p

    Warped Bayesian linear regression for normative modelling of big data

    No full text
    Normative modelling is becoming more popular in neuroimaging due to its ability to make predictions of deviation from a normal trajectory at the level of individual participants. It allows the user to model the distribution of several neuroimaging modalities, giving an estimation for the mean and centiles of variation. With the increase in the availability of big data in neuroimaging, there is a need to scale normative modelling to big data sets. However, the scaling of normative models has come with several challenges. So far, most normative modelling approaches used Gaussian process regression, and although suitable for smaller datasets (up to a few thousand participants) it does not scale well to the large cohorts currently available and being acquired. Furthermore, most neuroimaging modelling methods that are available assume the predictive distribution to be Gaussian in shape. However, deviations from Gaussianity can be frequently found, which may lead to incorrect inferences, particularly in the outer centiles of the distribution. In normative modelling, we use the centiles to give an estimation of the deviation of a particular participant from the 'normal' trend. Therefore, especially in normative modelling, the correct estimation of the outer centiles is of utmost importance, which is also where data are sparsest. Here, we present a novel framework based on Bayesian linear regression with likelihood warping that allows us to address these problems, that is, to correctly model non-Gaussian predictive distributions and scale normative modelling elegantly to big data cohorts. In addition, this method provides likelihood-based statistics, which are useful for model selection. To evaluate this framework, we use a range of neuroimaging-derived measures from the UK Biobank study, including image-derived phenotypes (IDPs) and whole-brain voxel-wise measures derived from diffusion tensor imaging. We show good computational scaling and improved accuracy of the warped BLR for certain IDPs and voxels if there was a deviation from normality of these parameters in their residuals. The present results indicate the advantage of a warped BLR in terms of; computational scalability and the flexibility to incorporate non-linearity and non-Gaussianity of the data, giving a wider range of neuroimaging datasets that can be correctly modelled

    Understanding Heterogeneity in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies

    No full text
    Contains fulltext : 166320.pdf (Publisher’s version ) (Open Access)BACKGROUND: Despite many successes, the case-control approach is problematic in biomedical science. It introduces an artificial symmetry whereby all clinical groups (e.g., patients and control subjects) are assumed to be well defined, when biologically they are often highly heterogeneous. By definition, it also precludes inference over the validity of the diagnostic labels. In response, the National Institute of Mental Health Research Domain Criteria proposes to map relationships between symptom dimensions and broad behavioral and biological domains, cutting across diagnostic categories. However, to date, Research Domain Criteria have prompted few methods to meaningfully stratify clinical cohorts. METHODS: We introduce normative modeling for parsing heterogeneity in clinical cohorts, while allowing predictions at an individual subject level. This approach aims to map variation within the cohort and is distinct from, and complementary to, existing approaches that address heterogeneity by employing clustering techniques to fractionate cohorts. To demonstrate this approach, we mapped the relationship between trait impulsivity and reward-related brain activity in a large healthy cohort (N = 491). RESULTS: We identify participants who are outliers within this distribution and show that the degree of deviation (outlier magnitude) relates to specific attention-deficit/hyperactivity disorder symptoms (hyperactivity, but not inattention) on the basis of individualized patterns of abnormality. CONCLUSIONS: Normative modeling provides a natural framework to study disorders at the individual participant level without dichotomizing the cohort. Instead, disease can be considered as an extreme of the normal range or as-possibly idiosyncratic-deviation from normal functioning. It also enables inferences over the degree to which behavioral variables, including diagnostic labels, map onto biology

    Linear methods for classification

    No full text
    Linear classification methods are highly prevalent in clinical neuroimaging and have been used to predict diagnosis and outcome in many brain disorders. Here, we provide a concise introduction to these methods aimed at the beginning practitioner. We introduce the two main variants: penalized linear models and probabilistic classification models, highlighting their relative strengths and weaknesses. We describe discriminative mapping, which is the ability to visualize the model coefficients in the input space and is a crucial benefit of linear models because it helps to understand which features of the data drive the predictions. We also introduce the notion of sparsity, which further assists interpretation in that it can be used to restrict the discriminative pattern to a small number of brain regions. Finally, we provide an overview of studies using linear models along with two illustrative applications using linear models to discriminate patients with autism and schizophrenia from healthy participants

    Beyond the average patient: how neuroimaging models can address heterogeneity in dementia

    Get PDF
    Dementia is a highly heterogeneous condition, with pronounced individual differences in age of onset, clinical presentation, progression rates and neuropathological hallmarks, even within a specific diagnostic group. However, the most common statistical designs used in dementia research studies and clinical trials overlook this heterogeneity, instead relying on comparisons of group average differences (e.g. patient versus control or treatment versus placebo), implicitly assuming within-group homogeneity. This one-size-fits-all approach potentially limits our understanding of dementia aetiology, hindering the identification of effective treatments. Neuroimaging has enabled the characterization of the average neuroanatomical substrates of dementias; however, the increasing availability of large open neuroimaging datasets provides the opportunity to examine patterns of neuroanatomical variability in individual patients. In this update, we outline the causes and consequences of heterogeneity in dementia and discuss recent research that aims to tackle heterogeneity directly, rather than assuming that dementia affects everyone in the same way. We introduce spatial normative modelling as an emerging data-driven technique, which can be applied to dementia data to model neuroanatomical variation, capturing individualized neurobiological 'fingerprints'. Such methods have the potential to detect clinically relevant subtypes, track an individual's disease progression or evaluate treatment responses, with the goal of moving towards precision medicine for dementia
    corecore