30 research outputs found
Genotoxic potential of dental bulk-fill resin composites
OBJECTIVE: To investigate both genotoxicity and hardening of bulk-fill composite materials applied in 4-mm layer thickness and photo-activated for different exposure times. METHODS: Three flowable bulk-fill materials and one conventional flowable composite were filled in molds (height: 4mm) and irradiated for 20 or 30s. The top (0mm) and bottom (4mm) specimen surface were mechanically scraped, and eluates (0.01g composite in 1.5ml RPMI 1640 cell culture media) prepared for each material, surface level and irradiation time. Genotoxicity was assessed in human leukocytes using both the alkaline comet assay and cytokinesis-blocked micronucleus assay, and Knoop hardness (KHN) was measured at the top and bottom specimen surface (n=8). RESULTS: At both irradiation times, none of the bulk-fill composites significantly affected comet assay parameters used in primary DNA damage assessment or induced significant formation of any of the scored chromatin abnormalities (number of micronuclei, nuclear buds, nucleoplasmic bridges), whether eluates were obtained from the top or bottom surface. Furthermore, no decrease in KHN from the top to the bottom surface of the bulk-fill materials was observed. On the other hand, the conventional composite irradiated for 20s showed at 4-mm depth a significant increase in the percentage of DNA that migrated in the tail and a significant increase in the number of nuclear buds, as well as a significant decrease in KHN relative to the top surface. SIGNIFICANCE: Bulk-fill resin composites, in contrast to conventional composite, applied in 4-mm thickness and photo-activated for at least 20s do not induce relevant genotoxic effects or mechanical instability
Izloženost genotoksičnim agensima iz životnog okoliša tijekom prenatalnog razvoja i djetinjstva
Health disorders and diseases related to environmental exposure in children such as cancer and immunologic disturbances (asthma, allergies) are on the rise. However, complex transplacental and prepubertal genotoxicology is given very limited consideration, even though intrauterine development and early childhood may be critical for elucidating the cancer aetiology. The foetus is transplacentally exposed to contaminants in food and environment such as various chemicals, drugs, radiochemically contaminated water and air. Target organs of xenobiotic action may differ between the mother and the foetus due to specific stage of developmental physiology and enzyme distribution. This in turn may lead to different levels of clastogenic and aneugenic metabolites of the same xenobiotic in the mother and the foetus. Adult’s protective behaviour is not sufficient to isolate children from radioisotopes, pesticides, toxic metals and metalloids, environmental tobacco smoke, endocrine disrupting chemicals, and various food contaminants, which are just a part of the stressors present in a polluted environment. In order to improve legislation related to foetus and child exposure to genotoxic and possibly carcinogenic agents, oncologists, paediatricians, environmental health specialists, and genotoxicologists should work together much more closely to make a more effective use of accumulated scientific data, with the final aim to lower cancer incidence and mortality.Unatoč velikim naporima da se smanji okolišna izloženost u djece se dalje bilježi trend porasta pojavnosti karcinoma i imunosnih poremećaja (astma, alergije). Premda su intrauterini razvoj i rano djetinjstvo kritično razdoblje za tumačenje etiologije nastanka karcinoma, transplacentalna i prepubertetna genotoksikologija
do danas su slabo istražene. Fetus je transplacentalno izložen brojnim fizikalnim i kemijskim čimbenicima: kontaminantima iz hrane i okoliša, radiokemijski kontaminiranoj vodi, zraku te lijekovima. Ciljna tkiva za djelovanje ksenobiotika mogu biti različita u majke i fetusa zbog različitosti u razvojnoj fiziologiji i distribuciji enzima. Zbog toga u organizmu majke i fetusa mogu nastati različite razine klastogenih i aneugenih metabolita istog ksenobiotika.
Zaštitna uloga odraslih u namjeri da spriječe negativne utjecaje onečišćenog okoliša na djetetovo zdravlje često je ograničena jer su radioizotopi, olovo, PCB, pasivno pušenje, živa, endokrino aktivne tvari, pesticidi i kontaminanti prisutni u svim životnim područjima tijekom razvoja i rasta djeteta. Kako bi se poboljšalo zakonodavstvo vezano uz izloženost djece genotoksičnim i vjerojatno kancerogenim tvarima, tijekom razvoja potrebna je bolja suradnja onkologa, pedijatara, stručnjaka zdravstvene ekologije i genotoksikologa.
Na taj način ostvarilo bi se uspješnije iskorištavanje postojećih znanstvenih podataka u cilju smanjenja incidencije karcinoma i mortaliteta
Influence of irradiation time on subsurface degree of conversion and microhardness of high-viscosity bulk-fill resin composites
OBJECTIVES To evaluate the influence of irradiation time on degree of conversion (DC) and microhardness of high-viscosity bulk-fill resin composites in depths up to 6 mm. MATERIALS AND METHODS Four bulk-fill materials (Tetric EvoCeram Bulk Fill-TECBF; x-tra fil-XF; QuixFil-QF; SonicFill-SF) and one conventional nano-hybrid resin composite (Tetric EvoCeram-TEC) were irradiated for 10, 20, or 30 s at 1,170 mW/cm(2). DC and Knoop microhardness (KHN) were recorded after 24-h dark storage at five depths: 0.1, 2, 4, 5, and 6 mm. Data were statistically analyzed using ANOVA and Bonferroni's post-hoc test (α = 0.05). RESULTS With increasing bulk thickness, DC and KHN significantly decreased for TEC. TECBF and SF showed a significant decrease in DC and KHN at 4-mm depth after 10-s irradiation, but no decrease in DC after 30-s irradiation (p > 0.05). XF and QF demonstrated no significant DC decrease at depths up to 6 mm after irradiation of at least 20 s. At 4-mm depth, all materials tested achieved at least 80 % of their maximum DC value, irrespective of irradiation time. However, at the same depth (4 mm), only XF and QF irradiated for 30 s achieved at least 80 % of their maximum KHN value. CONCLUSIONS Regarding DC, the tested bulk-fill resin composites can be safely used up to at least 4-mm incremental thickness. However, with respect to hardness, only XF and QF achieved acceptable results at 4-mm depth with 30 s of irradiation. CLINICAL RELEVANCE Minimum irradiation times stated by the manufacturers cannot be recommended for placement of high-viscosity bulk-fill materials in 4-mm increments
Effect of silanized nanosilica addition on remineralizing and mechanical properties of experimental composite materials with amorphous calcium phosphate
OBJECTIVES: Experimental composite resins with amorphous calcium phosphate (ACP) have the potential to regenerate demineralized tooth structures. The aim of the study was to investigate the effect of the addition of silanized silica nanofillers to the ACP-based composites on their mechanical properties and the kinetics of calcium and phosphate release. MATERIALS AND METHODS: The test materials comprised 5 wt% (5-ACP) or 10 wt% (10-ACP) of silanized silica admixed to the 40 wt% ACP and 50 or 55 wt% resin. The ACP control (0-ACP) contained 40 wt% ACP and 60 wt% resin. Additionally, composite material CeramX (Dentsply, Germany) was included as control. Three-point bending test was performed to calculate flexural strength and modulus of elasticity. Inductively coupled plasma atomic emission spectroscopy was used for measurement of ion release. The micromorphology of calcium phosphate depositions on composite samples has been qualitatively evaluated using a scanning electron microscope. The results were analyzed using Mann-Whitney and Wilcoxon rank sum tests (α < 0.05). RESULTS: Ion release was enhanced by the silica fillers, when compared to the 0-ACP. Although not statistically significant, flexural strength of 10-ACP was improved by 46 % compared to 0-ACP. Flexural modulus of 5-ACP was significantly higher than 0-ACP. CONCLUSIONS: The admixture of silanized fillers seems to be a promising approach for the improvement of mechanical and remineralizing properties of ACP composite resins. CLINICAL RELEVANCE: ACP-based composite resins with modified composition could serve as an effective remineralizing aid as base materials in restorative dental medicine.[on SciFinder (R)
SEE-GRID eInfrastructure for regional eScience
In the past 6 years, a number of targeted initiatives, funded by the European Commission via its information society and RTD programmes and Greek infrastructure development actions, have articulated a successful regional development actions in South East Europe that can be used as a role model for other international developments. The SEEREN (South-East European Research and Education Networking initiative) project, through its two phases, established the SEE segment of the pan-European G 'EANT network and successfully connected the research and scientific communities in the region. Currently, the SEE-LIGHT project is working towards establishing a dark-fiber backbone that will interconnect most national Research and Education networks in the region. On the distributed computing and storage provisioning i.e. Grid plane, the SEE-GRID (South-East European GRID e-Infrastructure Development) project, similarly through its two phases, has established a strong human network in the area of scientific computing and has set up a powerful regional Grid infrastructure, and attracted a number of applications from different fields from countries throughout the South-East Europe. The current SEEGRID-SCI project, ending in April 2010, empowers the regional user communities from fields of meteorology, seismology and environmental protection in common use and sharing of the regional e-Infrastructure. Current technical initiatives in formulation are focusing on a set of coordinated actions in the area of HPC and application fields making use of HPC initiatives. Finally, the current SEERA-EI project brings together policy makers - programme managers from 10 countries in the region. The project aims to establish a communication platform between programme managers, pave the way towards common e-Infrastructure strategy and vision, and implement concrete actions for common funding of electronic infrastructures on the regional level. The regional vision on establishing an e-Infrastructure compatible with European developments, and empowering the scientists in the region in equal participation in the use of pan-European infrastructures, is materializing through the above initiatives. This model has a number of concrete operational and organizational guidelines which can be adapted to help e-Infrastructure developments in other world regions. In this paper we review the most important developments and contributions by the SEEGRID-SCI project