20 research outputs found
Uncovering the clinical relevance of unclassified variants in DNA repair genes: a focus on BRCA negative Tunisian cancer families
Introduction: Recent advances in sequencing technologies have significantly increased our capability to acquire large amounts of genetic data. However, the clinical relevance of the generated data continues to be challenging particularly with the identification of Variants of Uncertain Significance (VUSs) whose pathogenicity remains unclear. In the current report, we aim to evaluate the clinical relevance and the pathogenicity of VUSs in DNA repair genes among Tunisian breast cancer families.Methods: A total of 67 unsolved breast cancer cases have been investigated. The pathogenicity of VUSs identified within 26 DNA repair genes was assessed using different in silico prediction tools including SIFT, PolyPhen2, Align-GVGD and VarSEAK. Effects on the 3D structure were evaluated using the stability predictor DynaMut and molecular dynamics simulation with NAMD. Family segregation analysis was also performed.Results: Among a total of 37 VUSs identified, 11 variants are likely deleterious affecting ATM, BLM, CHEK2, ERCC3, FANCC, FANCG, MSH2, PMS2 and RAD50 genes. The BLM variant, c.3254dupT, is novel and seems to be associated with increased risk of breast, endometrial and colon cancer. Moreover, c.6115G>A in ATM and c.592+3A>T in CHEK2 were of keen interest identified in families with multiple breast cancer cases and their familial cosegregation with disease has been also confirmed. In addition, functional in silico analyses revealed that the ATM variant may lead to protein immobilization and rigidification thus decreasing its activity. We have also shown that FANCC and FANCG variants may lead to protein destabilization and alteration of the structure compactness which may affect FANCC and FANCG protein activity.Conclusion: Our findings revealed that VUSs in DNA repair genes might be associated with increased cancer risk and highlight the need for variant reclassification for better disease management. This will help to improve the genetic diagnosis and therapeutic strategies of cancer patients not only in Tunisia but also in neighboring countries
African Genomic Medicine Portal: A Web Portal for Biomedical Applications
Genomics data are currently being produced at unprecedented rates, resulting in increased knowledge discovery and submission to public data repositories. Despite these advances, genomic information on African-ancestry populations remains significantly low compared with European- and Asian-ancestry populations. This information is typically segmented across several different biomedical data repositories, which often lack sufficient fine-grained structure and annotation to account for the diversity of African populations, leading to many challenges related to the retrieval, representation and findability of such information. To overcome these challenges, we developed the African Genomic Medicine Portal (AGMP), a database that contains metadata on genomic medicine studies conducted on African-ancestry populations. The metadata is curated from two public databases related to genomic medicine, PharmGKB and DisGeNET. The metadata retrieved from these source databases were limited to genomic variants that were associated with disease aetiology or treatment in the context of African-ancestry populations. Over 2000 variants relevant to populations of African ancestry were retrieved. Subsequently, domain experts curated and annotated additional information associated with the studies that reported the variants, including geographical origin, ethnolinguistic group, level of association significance and other relevant study information, such as study design and sample size, where available. The AGMP functions as a dedicated resource through which to access African-specific information on genomics as applied to health research, through querying variants, genes, diseases and drugs. The portal and its corresponding technical documentation, implementation code and content are publicly available
African Genomic Medicine Portal: A Web Portal for Biomedical Applications
Genomics data are currently being produced at unprecedented rates, resulting in increased knowledge discovery and submission to public data repositories. Despite these advances, genomic information on African-ancestry populations remains significantly low compared with European- and Asian-ancestry populations. This information is typically segmented across several different biomedical data repositories, which often lack sufficient fine-grained structure and annotation to account for the diversity of African populations, leading to many challenges related to the retrieval, representation and findability of such information. To overcome these challenges, we developed the African Genomic Medicine Portal (AGMP), a database that contains metadata on genomic medicine studies conducted on African-ancestry populations. The metadata is curated from two public databases related to genomic medicine, PharmGKB and DisGeNET. The metadata retrieved from these source databases were limited to genomic variants that were associated with disease aetiology or treatment in the context of African-ancestry populations. Over 2000 variants relevant to populations of African ancestry were retrieved. Subsequently, domain experts curated and annotated additional information associated with the studies that reported the variants, including geographical origin, ethnolinguistic group, level of association significance and other relevant study information, such as study design and sample size, where available. The AGMP functions as a dedicated resource through which to access African-specific information on genomics as applied to health research, through querying variants, genes, diseases and drugs. The portal and its corresponding technical documentation, implementation code and content are publicly available
Germline copy number variations in BRCA1/2 negative families: Role in the molecular etiology of hereditary breast cancer in Tunisia.
Hereditary breast cancer accounts for 5-10% of all breast cancer cases. So far, known genetic risk factors account for only 50% of the breast cancer genetic component and almost a quarter of hereditary cases are carriers of pathogenic mutations in BRCA1/2 genes. Hence, the genetic basis for a significant fraction of familial cases remains unsolved. This missing heritability may be explained in part by Copy Number Variations (CNVs). We herein aimed to evaluate the contribution of CNVs to hereditary breast cancer in Tunisia. Whole exome sequencing was performed for 9 BRCA negative cases with a strong family history of breast cancer and 10 matched controls. CNVs were called using the ExomeDepth R-package and investigated by pathway analysis and web-based bioinformatic tools. Overall, 483 CNVs have been identified in breast cancer patients. Rare CNVs affecting cancer genes were detected, of special interest were those disrupting APC2, POU5F1, DOCK8, KANSL1, TMTC3 and the mismatch repair gene PMS2. In addition, common CNVs known to be associated with breast cancer risk have also been identified including CNVs on APOBECA/B, UGT2B17 and GSTT1 genes. Whereas those disrupting SULT1A1 and UGT2B15 seem to correlate with good clinical response to tamoxifen. Our study revealed new insights regarding CNVs and breast cancer risk in the Tunisian population. These findings suggest that rare and common CNVs may contribute to disease susceptibility. Those affecting mismatch repair genes are of interest and require additional attention since it may help to select candidates for immunotherapy leading to better outcomes
Family specific genetic predisposition to breast cancer: results from Tunisian whole exome sequenced breast cancer cases.
International audienceBACKGROUND:A family history of breast cancer has long been thought to indicate the presence of inherited genetic events that predispose to this disease. In North Africa, many specific epidemio-genetic characteristics have been observed in breast cancer families when compared to Western populations. Despite these specificities, the majority of breast cancer genetics studies performed in North Africa remain restricted to the investigation of the BRCA1 and BRCA2 genes. Thus, comprehensive data at a whole exome or whole genome level from local patients are lacking.METHODS:A whole exome sequencing (WES) of seven breast cancer Tunisian families have been performed using a family-based approach. We focused our analysis on BC-TN-F001 family that included two affected members that have been sequenced using WES. Relevant variants identified in BC-TN-F001 have been confirmed using Sanger sequencing. Then, we conducted an integrative analysis by combining our results with those from other WES studies in order to figure out the genetic transmission model of the newly identified genes. Biological network construction and protein-protein interactions analyses have been performed to decipher the molecular mechanisms likely accounting for the role of these genes in breast cancer risk.RESULTS:Sequencing, filtering strategies, and validation analysis have been achieved. For BC-TN-F001, no deleterious mutations have been identified on known breast cancer genes. However, 373 heterozygous, exonic and rare variants have been identified on other candidate genes. After applying several filters, 12 relevant high-risk variants have been selected. Our results showed that these variants seem to be inherited in a family specific model. This hypothesis has been confirmed following a thorough analysis of the reported WES studies. Enriched biological process and protein-protein interaction networks resulted in the identification of four novel breast cancer candidate genes namely MMS19, DNAH3, POLK and KATB6.CONCLUSIONS:In this first WES application on Tunisian breast cancer patients, we highlighted the impact of next generation sequencing technologies in the identification of novel breast cancer candidate genes which may bring new insights into the biological mechanisms of breast carcinogenesis. Our findings showed that the breast cancer predisposition in non-BRCA families may be ethnic and/or family specific
Family specific genetic predisposition to breast cancer: results from Tunisian whole exome sequenced breast cancer cases
Abstract Background A family history of breast cancer has long been thought to indicate the presence of inherited genetic events that predispose to this disease. In North Africa, many specific epidemio-genetic characteristics have been observed in breast cancer families when compared to Western populations. Despite these specificities, the majority of breast cancer genetics studies performed in North Africa remain restricted to the investigation of the BRCA1 and BRCA2 genes. Thus, comprehensive data at a whole exome or whole genome level from local patients are lacking. Methods A whole exome sequencing (WES) of seven breast cancer Tunisian families have been performed using a family-based approach. We focused our analysis on BC-TN-F001 family that included two affected members that have been sequenced using WES. Relevant variants identified in BC-TN-F001 have been confirmed using Sanger sequencing. Then, we conducted an integrative analysis by combining our results with those from other WES studies in order to figure out the genetic transmission model of the newly identified genes. Biological network construction and protein–protein interactions analyses have been performed to decipher the molecular mechanisms likely accounting for the role of these genes in breast cancer risk. Results Sequencing, filtering strategies, and validation analysis have been achieved. For BC-TN-F001, no deleterious mutations have been identified on known breast cancer genes. However, 373 heterozygous, exonic and rare variants have been identified on other candidate genes. After applying several filters, 12 relevant high-risk variants have been selected. Our results showed that these variants seem to be inherited in a family specific model. This hypothesis has been confirmed following a thorough analysis of the reported WES studies. Enriched biological process and protein–protein interaction networks resulted in the identification of four novel breast cancer candidate genes namely MMS19, DNAH3, POLK and KATB6. Conclusions In this first WES application on Tunisian breast cancer patients, we highlighted the impact of next generation sequencing technologies in the identification of novel breast cancer candidate genes which may bring new insights into the biological mechanisms of breast carcinogenesis. Our findings showed that the breast cancer predisposition in non-BRCA families may be ethnic and/or family specific
Genetic testing for hereditary cancer syndromes in Tunisian patients: Impact on health system
Introduction: Cancer management in Africa faces diverse challenges due to limited resources, health system challenges, and other matters. Identifying hereditary cancer syndromic cases is crucial to improve clinical management and preventive care in these settings. This study aims to explore the clinicopathological features and genetic factors associated with hereditary cancer in Tunisia, a North African country with a rising cancer burden Materials and methods: Clinicopathological features and personal/family history of cancer were explored in 521 patients. Genetic analysis using Sanger and next-generation sequencing was performed for a set of patients Results: Hereditary breast and ovarian cancer syndrome was the most frequent cluster in which 36 BRCA mutations were identified. We described a subgroup of patients with likely ‘’breast cancer-only syndrome’’ among this cluster. Two cases of Li-Fraumeni syndrome with distinct TP53 mutations namely c.638G>A and c.733G>A have been identified. Genetic investigation also allowed the identification of a new BLM homozygous mutation (c.3254dupT) in one patient with multiple primary cancers. Phenotype-genotype correlation suggests the diagnosis of Bloom syndrome. A recurrent MUTYH mutation (c.1143_1144dup) was identified in three patients with different phenotypes Conclusion: Our study calls for comprehensive genetic education and the implementation of genetic screening in Tunisia and other African countries health systems, to reduce the burden of hereditary diseases and improve cancer outcomes in resource-stratified settings
Image1_Uncovering the clinical relevance of unclassified variants in DNA repair genes: a focus on BRCA negative Tunisian cancer families.pdf
Introduction: Recent advances in sequencing technologies have significantly increased our capability to acquire large amounts of genetic data. However, the clinical relevance of the generated data continues to be challenging particularly with the identification of Variants of Uncertain Significance (VUSs) whose pathogenicity remains unclear. In the current report, we aim to evaluate the clinical relevance and the pathogenicity of VUSs in DNA repair genes among Tunisian breast cancer families.Methods: A total of 67 unsolved breast cancer cases have been investigated. The pathogenicity of VUSs identified within 26 DNA repair genes was assessed using different in silico prediction tools including SIFT, PolyPhen2, Align-GVGD and VarSEAK. Effects on the 3D structure were evaluated using the stability predictor DynaMut and molecular dynamics simulation with NAMD. Family segregation analysis was also performed.Results: Among a total of 37 VUSs identified, 11 variants are likely deleterious affecting ATM, BLM, CHEK2, ERCC3, FANCC, FANCG, MSH2, PMS2 and RAD50 genes. The BLM variant, c.3254dupT, is novel and seems to be associated with increased risk of breast, endometrial and colon cancer. Moreover, c.6115G>A in ATM and c.592+3A>T in CHEK2 were of keen interest identified in families with multiple breast cancer cases and their familial cosegregation with disease has been also confirmed. In addition, functional in silico analyses revealed that the ATM variant may lead to protein immobilization and rigidification thus decreasing its activity. We have also shown that FANCC and FANCG variants may lead to protein destabilization and alteration of the structure compactness which may affect FANCC and FANCG protein activity.Conclusion: Our findings revealed that VUSs in DNA repair genes might be associated with increased cancer risk and highlight the need for variant reclassification for better disease management. This will help to improve the genetic diagnosis and therapeutic strategies of cancer patients not only in Tunisia but also in neighboring countries.</p
Table1_Uncovering the clinical relevance of unclassified variants in DNA repair genes: a focus on BRCA negative Tunisian cancer families.xlsx
Introduction: Recent advances in sequencing technologies have significantly increased our capability to acquire large amounts of genetic data. However, the clinical relevance of the generated data continues to be challenging particularly with the identification of Variants of Uncertain Significance (VUSs) whose pathogenicity remains unclear. In the current report, we aim to evaluate the clinical relevance and the pathogenicity of VUSs in DNA repair genes among Tunisian breast cancer families.Methods: A total of 67 unsolved breast cancer cases have been investigated. The pathogenicity of VUSs identified within 26 DNA repair genes was assessed using different in silico prediction tools including SIFT, PolyPhen2, Align-GVGD and VarSEAK. Effects on the 3D structure were evaluated using the stability predictor DynaMut and molecular dynamics simulation with NAMD. Family segregation analysis was also performed.Results: Among a total of 37 VUSs identified, 11 variants are likely deleterious affecting ATM, BLM, CHEK2, ERCC3, FANCC, FANCG, MSH2, PMS2 and RAD50 genes. The BLM variant, c.3254dupT, is novel and seems to be associated with increased risk of breast, endometrial and colon cancer. Moreover, c.6115G>A in ATM and c.592+3A>T in CHEK2 were of keen interest identified in families with multiple breast cancer cases and their familial cosegregation with disease has been also confirmed. In addition, functional in silico analyses revealed that the ATM variant may lead to protein immobilization and rigidification thus decreasing its activity. We have also shown that FANCC and FANCG variants may lead to protein destabilization and alteration of the structure compactness which may affect FANCC and FANCG protein activity.Conclusion: Our findings revealed that VUSs in DNA repair genes might be associated with increased cancer risk and highlight the need for variant reclassification for better disease management. This will help to improve the genetic diagnosis and therapeutic strategies of cancer patients not only in Tunisia but also in neighboring countries.</p