97 research outputs found

    Linking design and manufacturing domains via web-based and enterprise integration technologies

    Get PDF
    The manufacturing industry faces many challenges such as reducing time-to-market and cutting costs. In order to meet these increasing demands, effective methods are need to support the early product development stages by bridging the gap of communicating early design ideas and the evaluation of manufacturing performance. This paper introduces methods of linking design and manufacturing domains using disparate technologies. The combined technologies include knowledge management supporting for product lifecycle management (PLM) systems, enterprise resource planning (ERP) systems, aggregate process planning systems, workflow management and data exchange formats. A case study has been used to demonstrate the use of these technologies, illustrated by adding manufacturing knowledge to generate alternative early process plan which are in turn used by an ERP system to obtain and optimise a rough-cut capacity plan

    Review of industrial temperature measurement technologies and research priorities for the thermal characterisation of the factories of the future

    Get PDF
    As the largest source of dimensional measurement uncertainty, addressing the challenges of thermal variation is vital to ensure product and equipment integrity in the factories of the future. While it is possible to closely control room temperature, this is often not practical or economical to realise in all cases where inspection is required. This article reviews recent progress and trends in seven key commercially available industrial temperature measurement sensor technologies primarily in the range of 0 °C–50 °C for invasive, semi-invasive and non-invasive measurement. These sensors will ultimately be used to measure and model thermal variation in the assembly, test and integration environment. The intended applications for these technologies are presented alongside some consideration of measurement uncertainty requirements with regard to the thermal expansion of common materials. Research priorities are identified and discussed for each of the technologies as well as temperature measurement at large. Future developments are briefly discussed to provide some insight into which direction the development and application of temperature measurement technologies are likely to head

    Advanced Tools and Technologies for Collaborative Product Development and Knowledge Management

    Get PDF
    The shortcomings of the current state-of-the-art in distributed / collaborative product development of engineering products from concept to production are: A lack of an integrated interface for the full spectrum of functions needed by complex conceptual design for manufacture and assembly; and management and re-use of concept design knowledge within an integrated design environment. Recommendations are given on the integration of these disparate technologies for the benefit of collaborative work teams to enable them to use a seamlessly integrated interface to develop, review, analyse and reuse engineering and manufacturing knowledge and models within the enterprise and the supply chain. A proposed methodology and a functional description of such a system is presented. The system utilises the ProtĂ©gĂ©-2000 expert system on top of the Windchill data management / collaboration software. International Standard for the Exchange of Product model data – STEP is to be used for machining feature definition

    Experimental comparison of dynamic tracking performanceof iGPS and laser tracker

    Get PDF
    External metrology systems are increasingly being integrated with traditional industrial articulated robots, especially in the aerospace industries, to improve their absolute accuracy for precision operations such as drilling, machining and jigless assembly. While currently most of the metrology assisted robotics control systems are limited in their position update rate, such that the robot has to be stopped in order to receive a metrology coordinate update, some recent efforts are addressed toward controlling robots using real-time metrology data. The indoor GPS is one of the metrology systems that may be used to provide real-time 6DOF data to a robot controller. Even if there is a noteworthy literature dealing with the evaluation of iGPS performance, there is, however, a lack of literature on how well the iGPS performs under dynamic conditions. This paper presents an experimental evaluation of the dynamic measurement performance of the iGPS, tracking the trajectories of an industrial robot. The same experiment is also repeated using a laser tracker. Besides the experiment results presented, this paper also proposes a novel method for dynamic repeatability comparisons of tracking instrument

    Knowledge-Enriched Product Data Management to Support Aggregate Process Planning

    Get PDF
    This paper is proposed a novel method to disperse manufacturing knowledge through the application of a Product Data Management (PDM) system. The intention of this new development is to support aggregate process planning during the early product development phases. The objective of the methodology is that manufacturing knowledge can be captured and reused within a distributed and collaborative environment. In addition, this paper also emphasises the way in which manufacturing knowledge can be encapsulated in a domain- specific ontology called ‘manufacturing know-how’. Its semantics can be translated through the application of web-based technologies so that it would enrich the value of manufacturing knowledge being managed and promote the sharing of that knowledge within a distributed and collaborative environment

    Design for verification

    Get PDF
    Increased competition in the aerospace market has placed additional demands on aerospace manufacturers to reduce costs, increase product flexibility and improve manufacturing efficiency. There is a knowledge gap within the sphere of digital to physical dimensional verification and on how to successfully achieve dimensional specifications within real-world assembly factories that are subject to varying environmental conditions. This paper describes a novel Design for Verification (DfV) framework to be used within low rate and high value and complexity manufacturing industries to aid in achieving high productivity in assembly via the effective dimensional verification of large volume structures, during final assembly. The 'Design for Verification' framework has been developed to enable engineers to design and plan the effective dimensional verification of large volume, complex structures in order to reduce failure rates and end-product costs, improve process integrity and efficiency, optimise metrology processes, decrease tooling redundancy and increase product quality and conformance to specification. The theoretical elements of the DfV methods are outlined, together with their testing using industrial case studies of representative complexity. The industrial tests have proven that by using the new Design for Verification methods alongside the traditional 'Design for X' toolbox, resulted in improved tolerance analysis and synthesis, optimized large volume metrology and assembly processes and more cost effective tool and jig design

    The Application of Web-based Technologies in Product Data Management and Manufacturing Systems Interoperability and Data Exchange

    Get PDF
    As the use of web-centric technology matures within the current market, one of the most widely used standardized data exchange formats is XML (Extensible Markup Language). This is due to the fact that XML-wrapped data can be used and understood by any application that is XML-enabled. This is one of the main factors this paper aims to exploit in order to tackle the problem of improving manufacturing product development in a distributed and collaborative environment within the World-Wide-Web. The objective of this paper is to investigate how XML and the proposed standard XMI (XML Metadata Interchange) can be used as the mediation for associating a commercially available Product Data Management (PDM) system and a manufacturing system, which consists of manufacturing and design domains. In particular, the focus of this paper is to emphasise the way in which systems interoperate and deliver data solutions to enterprise information challenges

    Workflow Activity Task Controller: an Approach to Distribute Knowledge and Information in Collaborative Product Development

    Get PDF
    This paper presents a theoretical approach to workflow process management using well established PDM functions for controlling knowledge and information to support collaborative product development processes within the WWW. The new methodology is called Workflow Activity Task Controller (WATC) that can securely distribute design and manufacturing knowledge to support process planning with information exchange during the early stages of the product development phases. Most specifically, WATC uses the methods described herein to link the workflow management of a PDM system with a knowledge-based system and a process planning system. In addition, this framework is flexible and adaptive and can be extended to adapt to a specific company’s needs. The objective and the intention of the development are to improve information flows, promote sharing of design and manufacturing knowledge and subsequently to maximise effectiveness of product development activities and task efficiency

    Open Standard, Open Source and Peer to Peer Methods for Collaborative Product Development and Knowledge Management

    Get PDF
    Tools such as product data management (PDM) and its offspring product lifecycle management (PLM) enable collaboration within and between enterprises. Large enterprises have invariably been the target of software vendors for development of such tools, resulting in large entralized applications. These are beyond the means of small to medium enterprises (SME). Even after these efforts had been made, large enterprises face numerous difficulties with PLM. Firstly, enterprises evolve, and an evolving enterprise needs an evolving data management system. With large applications, such configuration changes have to be made at the server level by dedicated staff. The second problem arises when enterprises wish to collaborate with a large number of suppliers and original equipment manufacturer (OEM) customers. Current applications enable collaboration using business-to-business (B2B) protocols. However, these do not take into account that disparate enterprises do not have unitary data models or workflows. This is a strong factor in reducing the abilities of large enterprises to participate in collaborative project
    • 

    corecore