49 research outputs found

    Laser tracker position optimization

    Get PDF
    This article presents a laser tracker position optimization code based on the tracker uncertainty model developed by the National Physical Laboratory (NPL). The code is able to find the optimal tracker positions for generic measurements involving one or a network of many trackers, and an arbitrary set of targets. The optimization is performed using pattern search or optionally, genetic algorithm (GA) or particle swarm optimization (PSO). Different objective function weightings for the uncertainties of individual points, distance uncertainties between point pairs, and the angular uncertainties between three points can be defined. Constraints for tracker position limits and minimum measurement distances have also been implemented. Furthermore, position optimization taking into account of lines-of-sight (LOS) within complex CAD geometry have also been demonstrated. The code is simple to use and can be a valuable measurement planning tool

    Laser tracker position optimization

    Get PDF

    High accuracy mobile robot positioning using external large volume metrology instruments

    Get PDF
    A method of accurately controlling the position of a mobile robot using an external large volume metrology (LVM) instrument is presented in this article. By utilising an LVM instrument such as a laser tracker or indoor GPS (iGPS) in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real-time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitisation scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. Further, iGPS guidance of a small KUKA omni-directional robot has been demonstrated, and a full scale prototype system is being developed in cooperation with KUKA Robotics, UK. © 2011 Taylor & Francis

    Rapid machine tool verification

    Get PDF
    This paper describes work carried out to develop methods of verifying that machine tools are capable of machining parts to within specification, immediately before carrying out critical material removal operations, and with negligible impact on process times. A review of machine tool calibration and verification technologies identified that current techniques were not suitable due to requirements for significant time and skilled human intervention. A 'solution toolkit' is presented consisting of a selection circular tests and artefact probing which are able to rapidly verify the kinematic errors and in some cases also dynamic errors for different types of machine tool, as well as supplementary methods for tool and spindle error detection. A novel artefact probing process is introduced which simplifies data processing so that the process can be readily automated using only the native machine tool controller. Laboratory testing and industrial case studies are described which demonstrate the effectiveness of this approach

    Verification of the indoor GPS system, by comparison with calibrated coordinates and by angular reference

    Get PDF
    This paper details work carried out to verify the dimensional measurement performance of the Indoor GPS (iGPS) system; a network of Rotary-Laser Automatic Theodolites (R-LATs). Initially tests were carried out to determine the angular uncertainties on an individual R-LAT transmitter-receiver pair. A method is presented of determining the uncertainty of dimensional measurement for a three dimensional coordinate measurement machine. An experimental procedure was developed to compare three dimensional coordinate measurements with calibrated reference points. The reference standard used to calibrate these reference points was a fringe counting interferometer with the multilateration technique employed to establish three dimensional coordinates. This is an extension of the established technique of comparing measured lengths with calibrated lengths. The method was found to be practical and able to establish that the expanded uncertainty of the basic iGPS system was approximately 1 mm at a 95% confidence level. Further tests carried out on a highly optimized version of the iGPS system have shown that the coordinate uncertainty can be reduced to 0.25 mm at a 95% confidence level

    Metrology enhanced tooling for aerospace (META): A live fixturing Wing Box assembly case study

    Get PDF
    Aerospace manufacturers typically use monolithic steel fixtures to control the form of assemblies; this tooling is very expensive to manufacture, has long lead times and has little ability to accommodate product variation and design changes. Traditionally, the tool setting and recertification process is manual and time consuming, monolithic structures are required in order to maintain the tooling tolerances for multiple years without recertification. As part of a growing requirement to speed up tool-setting procedures this report explores a coupon study of live fixturing; that is, automated: fixture setting, correction and measurement. The study aims to use a measurement instrument to control the position of an actuated tooling flag, the flag will automatically move until the Key Characteristic (KC) of the part/assembly is within tolerance of its nominal position. This paper updates developments with the Metrology Enhanced Tooling for Aerospace (META) Framework which interfaces multiple metrology technologies with the tooling, components, workers and automation. This will allow rapid or even real-time fixture re-certification with improved product verification leading to a reduced risk of product non-conformance and increased fixture utilization while facilitating flexible fixtures

    Estimation of uncertainty in three-dimensional coordinate measurement by comparison with calibrated points

    Get PDF
    This paper details a method of estimating the uncertainty of dimensional measurement for a three-dimensional coordinate measurement machine. An experimental procedure was developed to compare three-dimensional coordinate measurements with calibrated reference points. The reference standard used to calibrate these reference points was a fringe counting interferometer with a multilateration-like technique employed to establish three-dimensional coordinates. This is an extension of the established technique of comparing measured lengths with calibrated lengths. Specifically a distributed coordinate measurement device was tested which consisted of a network of Rotary-Laser Automatic Theodolites (R-LATs), this system is known commercially as indoor GPS (iGPS). The method was found to be practical and was used to estimate that the uncertainty of measurement for the basic iGPS system is approximately 1 mm at a 95% confidence level throughout a measurement volume of approximately 10 m × 10 m × 1.5 m. © 2010 IOP Publishing Ltd
    corecore