54 research outputs found

    On the effect of nocturnal radiation fog on the development of the daytime convective boundary layer: A large-eddy simulation study

    Get PDF
    The potential effect of failing to predict nocturnal deep radiation fog on the development of the daytime convective boundary layer (CBL) is studied using large-eddy simulations. Typical spring and autumn conditions for the mid-latitudes are used to perform simulations in pairs. Fog formation is allowed in one simulation of each pair (nocturnal fog [NF]) and is suppressed in the other (clear sky [CS]). This allows for the identification of properties (temperature, humidity, boundary-layer depth), conditions, and processes in CBL development that are affected by fog. Mixing-layer temperatures and boundary-layer depths immediately after fog dissipation in CSs are shown to be up to 2.5 K warmer and 200 m higher, respectively, than the NF counterparts. Additionally, greater water vapor mixing ratios are found in the CSs. However, owing to greater temperatures, relative humidities at the CBL top are found to be less in CSs than in the corresponding NFs. This relative humidity difference might be an indication that cloud formation is suppressed to some extent. The magnitude of the differences between CSs and NFs during the day is mainly correlated to the fog depth (in terms of duration and liquid water path), whereas the key processes responsible for differences are the atmospheric long-wave cooling of the fog layer (for temperature development) and droplet deposition (for water vapor mixing ratio development)

    An Investigation of the Grid Sensitivity in Large-Eddy Simulations of the Stable Boundary Layer

    Get PDF
    We revisit the longstanding problem of grid sensitivity, i.e., the lack of grid convergence in large-eddy simulations (LES) of the stable boundary layer. We use a comprehensive set of LES of the well-known Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study 1 (GABLS1) case with varying grid spacings between 12.5 m and 1 m to investigate several physical processes and numerical features that are possible causes of grid sensitivity. Our results demonstrate that there are two resolution regimes in which grid sensitivity manifests differently. We find that changing the numerical advection schemes and the subgrid-scale models alters the simulation results, but the options tested do not fully address the grid-sensitivity issue. Moreover, sensitivity runs suggest that the surface boundary condition and the interaction of the surface with the near-surface flow, as well as the mixing with the free atmosphere, are unlikely to be the causes of the observed grid sensitivity. One interesting finding is that the grid sensitivity in the fine grid-spacing regime (grid spacings ≤2m) is closely related to the reduction in the energy content of large-scale turbulence, leading to less turbulence kinetic energy and hence lower boundary-layer heights. The present work demonstrates that there is still an urgent need to address this grid-sensitivity issue in order to perform reliable LES of the stable boundary layer. © 2021, The Author(s)

    Addressing the Grid-size Sensitivity Issue in Large-eddy Simulations of Stable Boundary Layers

    Get PDF
    In this study, we have identified certain fundamental limitations of a mixing length parameterization used in a popular turbulent kinetic energy-based subgrid-scale model. Replacing this parameterization with a more physically realistic one significantly improves the overall quality of the large-eddy simulations (LESs) of stable boundary layers. For the range of grid sizes considered here (specifically, 1 m -- 12.5 m), the revision dramatically reduces the grid-size sensitivity of the simulations. Most importantly, the revised scheme allows us to reliably estimate the first- and second-order statistics of a well-known LES intercomparison case, even with a coarse grid-size of O(10 m)

    On the Effect of Surface Heat-Flux Heterogeneities on the Mixed-Layer-Top Entrainment

    Get PDF
    We used a set of large-eddy simulations to investigate the effect of one-dimensional stripe-like surface heat-flux heterogeneities on mixed-layer top entrainment. The profiles of sensible heat flux and the temporal evolution of the boundary-layer depth revealed decreased entrainment for small heat-flux amplitudes and increased entrainment for large heat-flux amplitudes, compared to the homogeneously-heated mixed layer. For large heat-flux amplitudes the largest entrainment was observed for patch sizes in the order of the boundary-layer depth, while for significantly smaller or larger patch sizes entrainment was similar as in the homogeneous case. In order to understand the underlying physics of this impact, a new approach was developed to infer local information on entrainment by means of the local flux divergence. We found an entrainment maximum over the centre of the stronger heated surface patch, where thermal energy is accumulated by the secondary circulation (SC) that was induced by the surface heterogeneity. Furthermore, we observed an entrainment maximum over the less heated patch as well, which we suppose is to be linked to the SC-induced horizontal flow convergence at the top of the convective boundary layer (CBL). For small heat-flux amplitudes a counteracting effect dominates that decreases entrainment, which we suppose is the horizontal advection of cold air in the lower, and warm air in the upper, CBL by the SC, stabilizing the CBL and thus weakening thermal convection. Moreover, we found that a mean wind can reduce the heterogeneity-induced impact on entrainment. If the flow is aligned perpendicular to the border between the differentially-heated patches, the SC and thus its impact on entrainment vanishes due to increased horizontal mixing, even for moderate wind speeds. However, if the flow is directed parallel to the border between the differentially-heated patches, the SC and thus its impact on entrainment persists.DFG/RA 617/21-1DFG/RA 617/20-1Niedersächsische Technische Hochschule (NTH

    Addressing the Grid-Size Sensitivity Issue in Large-Eddy Simulations of Stable Boundary Layers

    Get PDF
    We have identified certain fundamental limitations of a mixing-length parametrization used in a popular turbulent kinetic energy-based subgrid-scale model. Replacing this parametrization with a more physically realistic one significantly improves the overall quality of the large-eddy simulation (LES) of stable boundary layers. For the range of grid sizes considered here (specifically, 1 m–12.5 m), the revision dramatically reduces the grid-size sensitivity of the simulations. Most importantly, the revised scheme allows us to reliably estimate the first- and second-order statistics of a well-known LES intercomparison case, even with a coarse grid size of O(10 m)

    Multiskalige Erfassung und Prognose des Stadtklimas

    Get PDF
    Im Rahmen der BMBF-Fördermaßname „Stadtklima im Wandel“ werden Methoden und Werkzeuge zur multiskaligen Erfassung und Prognose des Stadtklimas erarbeitet. Der Beitrag gibt einen kurzen Überblick zum Gesamtprojekt und beschäftigt sich mit dem Teilbereich thermische Belastung von Stadtbewohnern. Zur Erfassung des Zustandes wurde in Konzept mit mobilen Messsystemen entwickelt und angewendet. Die erhobenen Daten dienen unter anderem zur Evaluierung des neuen Stadtklimamodells PALM-4U. Dieses Werkzeug wird in „Stadtklima im Wandel“ weiterentwickelt und in Zusammenarbeit mit Anwendern und Behörden auf Funktionalität getestet. Das Konzept wird anhand von Untersuchungen in Berlin getestet

    Scaling the Decay of Turbulence Kinetic Energy in the Free-Convective Boundary Layer

    Get PDF
    We investigate the scaling for decaying turbulence kinetic energy (TKE) in the free-convective boundary layer, from the time the surface heat flux starts decaying, until a few hours after it has vanished. We conduct a set of large-eddy simulation experiments, consider various initial convective situations, and prescribe realistic decays of the surface heat flux over a wide range of time scales. We find that the TKE time evolution is dictated by the decaying magnitude of the surface heat flux up to 0.7 τ approximately, where τ is the prescribed duration from maximum to zero surface heat flux. During the time period starting at zero surface heat flux, we search for potential power-law scaling by examining the log–log presentation of TKE as a function of time. First, we find that the description of the decay highly depends on whether the time origin is defined as the time when the surface heat flux starts decaying (traditional scaling framework), or the time when it vanishes (proposed new scaling framework). Second, when varying τ, the results plotted in the traditional scaling framework indicate variations in the power-law decay rates over several orders of magnitude. In the new scaling framework, however, we find a unique decay exponent in the order of 1, independent of the initial convective condition, and independent of τ, giving support for the proposed scaling framework

    Evaluation of the dynamic core of the PALM model system 6.0 in a neutrally stratified urban environment: Comparison between les and wind-tunnel experiments

    Get PDF
    We demonstrate the capability of the PALM model system version 6.0 to simulate neutrally stratified urban boundary layers. Our simulation uses the real-world building configuration of the HafenCity area in Hamburg, Germany. Using PALM's virtual measurement module, we compare simulation results to wind-tunnel measurements of a downscaled replica of the study area. Wind-tunnel measurements of mean wind speed agree within 5% on average while the wind direction deviates by approximately 4 °. Turbulence statistics similarly agree. However, larger differences between measurements and simulation arise in the vicinity of surfaces where building geometry is insufficiently resolved. We discuss how to minimize these differences by improving the grid layout and give tips for setup preparation. Also, we discuss how existing and upcoming features of PALM like the grid nesting and immersed boundary condition help improve the simulation results. © 2021 Tobias Gronemeier et al
    corecore