1,626 research outputs found

    \u3cem\u3eNautilus\u3c/em\u3e Sample 2016: New Techniques and Partnerships

    Get PDF
    In 2016, E/V Nautilus and the ROV Hercules collected 549 geological, biological, and water samples (2,022 subsamples) to characterize several US West Coast national marine sanctuaries, the Cascadia margin, and offshore southern California. Most samples are archived at partnering repositories: geological samples to the Marine Geological Samples Lab at the University of Rhode Island and biological samples to Harvard University’s Museum of Comparative Zoology. The national marine sanctuary samples were split between these repositories and the California Academy of Sciences. During this field season, we experimented with new sampling methods to improve exploration efficiency and robustness

    Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea

    Get PDF
    The atmospheric flux of methane from the oceans is largely mitigated through microbially mediated sulphate-coupled methane oxidation, resulting in the precipitation of authigenic carbonates. Deep-sea carbonates are common around active and palaeo-methane seepage, and have primarily been viewed as passive recorders of methane oxidation; their role as active and unique microbial habitats capable of continued methane consumption has not been examined. Here we show that seep-associated carbonates harbour active microbial communities, serving as dynamic methane sinks. Microbial aggregate abundance within the carbonate interior exceeds that of seep sediments, and molecular diversity surveys reveal methanotrophic communities within protolithic nodules and well-lithified carbonate pavements. Aggregations of microbial cells within the carbonate matrix actively oxidize methane as indicated by stable isotope FISH–nanoSIMS experiments and ^(14)CH_4 radiotracer rate measurements. Carbonate-hosted methanotrophy extends the known ecological niche of these important methane consumers and represents a previously unrecognized methane sink that warrants consideration in global methane budgets

    New opportunities and untapped scientific potential in the abyssal ocean

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marlow, J., Anderson, R., Reysenbach, A.-L., Seewald, J., Shank, T., Teske, A., Wanless, V., & Soule, S. New opportunities and untapped scientific potential in the abyssal ocean. Frontiers in Marine Science, 8, (2022): 798943, https://doi.org/10.3389./fmars.2021.798943The abyssal ocean covers more than half of the Earth’s surface, yet remains understudied and underappreciated. In this Perspectives article, we mark the occasion of the Deep Submergence Vehicle Alvin’s increased depth range (from 4500 to 6500 m) to highlight the scientific potential of the abyssal seafloor. From a geologic perspective, ultra-slow spreading mid-ocean ridges, Petit Spot volcanism, transform faults, and subduction zones put the full life cycle of oceanic crust on display in the abyss, revealing constructive and destructive forces over wide ranges in time and space. Geochemically, the abyssal pressure regime influences the solubility of constituents such as silica and carbonate, and extremely high-temperature fluid-rock reactions in the shallow subsurface lead to distinctive and potentially unique geochemical profiles. Microbial residents range from low-abundance, low-energy communities on the abyssal plains to fast growing thermophiles at hydrothermal vents. Given its spatial extent and position as an intermediate zone between coastal and deep hadal settings, the abyss represents a lynchpin in global-scale processes such as nutrient and energy flux, population structure, and biogeographic diversity. Taken together, the abyssal ocean contributes critical ecosystem services while facing acute and diffuse anthropogenic threats from deep-sea mining, pollution, and climate change.We would like to thank the National Science Foundation for their support through grants NSF 2009117 and 2129431 to SAS

    Methane Seep Carbonates Host Distinct, Diverse, and Dynamic Microbial Assemblages

    Get PDF
    Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages

    Metabolomics as an emerging tool in the search for astrobiologically relevant biomarkers

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seyler, L., Kujawinski, E. B., Azua-Bustos, A., Lee, M. D., Marlow, J., Perl, S. M., & Cleaves, H. J. Metabolomics as an emerging tool in the search for astrobiologically relevant biomarkers. Astrobiology, (2020), doi:10.1089/ast.2019.2135.It is now routinely possible to sequence and recover microbial genomes from environmental samples. To the degree it is feasible to assign transcriptional and translational functions to these genomes, it should be possible, in principle, to largely understand the complete molecular inputs and outputs of a microbial community. However, gene-based tools alone are presently insufficient to describe the full suite of chemical reactions and small molecules that compose a living cell. Metabolomic tools have developed quickly and now enable rapid detection and identification of small molecules within biological and environmental samples. The convergence of these technologies will soon facilitate the detection of novel enzymatic activities, novel organisms, and potentially extraterrestrial life-forms on solar system bodies. This review explores the methodological problems and scientific opportunities facing researchers who hope to apply metabolomic methods in astrobiology-related fields, and how present challenges might be overcome.This study was partially supported by the ELSI Origins Network (EON), which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. This work was partially supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas “Hadean Bioscience,” grant number JP26106003, and also partially supported by Project “icyMARS,” funded by the European Research Council, ERC Starting Grant No. 307496. A.A-B thanks the contribution from the Project “MarsFirstWater,” funded by the European Research Council, ERC Consolidator Grant No. 818602 and the HFSP Project UVEnergy RGY0066/2018

    Comparative effectiveness of dual-action versus single-action antidepressants for the treatment of depression in people living with HIV/AIDS

    Get PDF
    Background Depression is the most common psychiatric comorbidity among people living with HIV/AIDS (PLWHA). Little is known about the comparative effectiveness between different types of antidepressants used to treat depression in this population. We compared the effectiveness of dual-action and single-action antidepressants in PLWHA for achieving remission from depression. Methods We used data from the Centers for AIDS Research Network of Integrated Clinic Systems to identify 1175 new user dual-action or single-action antidepressant treatment episodes occurring from 2005 to 2014 for PLWHA diagnosed with depression. The primary outcome was remission from depression defined as a Patient Health Questionnaire-9 (PHQ-9) score <5. Mean difference in PHQ-9 depressive symptom severity was a secondary outcome. The main approach was an intent-to-treat (ITT) evaluation complemented with a per protocol (PP) sensitivity analysis. Generalized linear models were fitted to estimate treatment effects. Results In ITT analysis, 32% of the episodes ended in remission for both dual-action and single-action antidepressants. The odds ratio (OR) of remission was 1.02 (95%CI=0.63,1.67). In PP analysis, 40% of dual-action episodes ended in remission compared to 32% in single-action episodes. Dual-action episodes had 1.33 times the odds of remission (95%CI=0.55,3.21), however the result was not statistically significant. Non-significant differences were also observed for depressive symptom severity. Limitations Missing data was common but was addressed with inverse probability weights. Conclusions Results suggest that single-action and dual-action antidepressants are equally effective in PLWHA. Remission was uncommon highlighting the need to identify health service delivery strategies that aid HIV providers in achieving full remission of their patients’ depression
    • …
    corecore