617 research outputs found

    Timing Features of the Accretion--driven Millisecond X-Ray Pulsar XTE J1807--294 in 2003 March Outburst

    Full text link
    In order to probe the activity of the inner disk flow and its effect on the neutron star surface emissions, we carried out the timing analysis of the Rossi X-Ray Timing Explorer (RXTE) observations of the millisecond X-ray pulsar XTE J1807--294, focusing on its correlated behaviors in X-ray intensities, hardness ratios, pulse profiles and power density spectra. The source was observed to have a serial of broad "puny" flares on a timescale of hours to days on the top of a decaying outburst in March 2003. In the flares, the spectra are softened and the pulse profiles become more sinusoidal. The frequency of kilohertz quasi-periodic oscillation (kHz QPO) is found to be positively related to the X-ray count rate in the flares. These features observed in the flares could be due to the accreting flow inhomogeneities. It is noticed that the fractional pulse amplitude increases with the flare intensities in a range of ∼2\sim 2%-14%, comparable to those observed in the thermonuclear bursts of the millisecond X-ray pulsar XTE J1814--338, whereas it remains at about 6.5% in the normal state. Such a significant variation of the pulse profile in the "puny" flares may reflect the changes of physical parameters in the inner disk accretion region. Furthermore, we noticed an overall positive correlation between the kHz QPO frequency and the fractional pulse amplitude, which could be the first evidence representing that the neutron-star surface emission properties are very sensitive to the disk flow inhomogeneities. This effect should be cautiously considered in the burst oscillation studies.Comment: Accepted by ApJ, 23 pages, 7 figures, 3 table

    Search for L5 Earth Trojans with DECam

    Get PDF
    Most of the major planets in the Solar system support populations of co-orbiting bodies, known as Trojans, at their L4 and L5 Lagrange points. In contrast, Earth has only one known co-orbiting companion. This paper presents the results from a search for Earth Trojans (ETs) using the DECam instrument on the Blanco Telescope at CTIO. This search found no additional Trojans in spite of greater coverage compared to previous surveys of the L5 point. Therefore, the main result of this work is to place the most stringent constraints to date on the population of ETs. These constraints depend on assumptions regarding the underlying population properties, especially the slope of the magnitude distribution (which in turn depends on the size and albedo distributions of the objects). For standard assumptions, we calculate upper limits to a 90 per cent confidence limit on the L5 population of N_(ET) < 1 for magnitude H < 15.5, N_(ET) = 60–85 for H < 19.7, and N_(ET) = 97 for H = 20.4. This latter magnitude limit corresponds to Trojans ∼300 m in size for albedo 0.15. At H = 19.7, these upper limits are consistent with previous L4 ET constraints and significantly improve L5 constraints

    ROSAT Observations of the Vela Pulsar

    Get PDF
    The ROSAT HRI was used to monitor X-ray emission from the Vela Pulsar. Six observations span 2-1/2 years and 3 glitches. The summed data yield a determination of the pulse shape, and X-ray emission from the pulsar is found to be 12 % pulsed with one broad and two narrow peaks. One observation occurred 15 days after a large glitch. No change in pulse structure was observed and any change in X-ray luminosity, if present, was less than 3 %. Implications for neutron star structure are discussed.Comment: To be publisned in the Astrophysical Journa

    Monitoring and Discovering X-ray Pulsars in the Small Magellanic Cloud

    Full text link
    Regular monitoring of the SMC with RXTE has revealed a huge number of X-ray pulsars. Together with discoveries from other satellites at least 45 SMC pulsars are now known. One of these sources, a pulsar with a period of approximately 7.8 seconds, was first detected in early 2002 and since discovery it has been found to be in outburst nine times. The outburst pattern clearly shows a period of 45.1 +/- 0.4 d which is thought to be the orbital period of this system. Candidate outburst periods have also been obtained for nine other pulsars and continued monitoring will enable us to confirm these. This large number of pulsars, all located at approximately the same distance, enables a wealth of comparative studies. In addition, the large number of pulsars found (which vastly exceeds the number expected simply by scaling the relative mass of the SMC and the Galaxy) reveals the recent star formation history of the SMC which has been influenced by encounters with both the LMC and the Galaxy.Comment: 5 pages, 4 figures, AIP conference proceedings format. Contribution to "X-ray Timing 2003: Rossi and Beyond." meeting held in Cambridge, MA, November, 200

    Suzaku Observations of Four Heavily Absorbed HMXBs

    Full text link
    We report on Suzaku observations of four unidentified sources from the INTEGRAL and Swift BAT Galactic plane surveys. All the sources have a large neutral hydrogen column density and are likely members of an emerging class of heavily absorbed high mass X-ray binary (HMXB) first identified in INTEGRAL observations. Two of the sources in our sample are approximately constant flux sources, one source shows periodic variation and one source exhibited a short, bright X-ray outburst. The periodicity is transient, suggesting it is produced by a neutron star in an elliptical orbit around a stellar wind source. We analyze the flaring source in several segments to look for spectral variation and discuss the implications of the findings for the nature of the source. We conclude that all four sources in our sample can be identified with the emerging class of highly absorbed HMXBs, that one is a newly identified transient X-ray pulsar and that at least one is a newly identified supergiant fast X-ray transient (SFXT).Comment: 22 pages, 5 figures, submitted to Ap

    X-ray properties of an Unbiased Hard X-ray Detected Sample of AGN

    Full text link
    The SWIFT gamma ray observatory's Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195 keV). In this paper, we present for the first time {\it XMM-Newton} X-ray spectra for 22 BAT AGNs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (nH=0.03_H = 0.03), AGN sample. We find 9/22 low absorption (nH<1023_H < 10^{23} cm−2^{-2}), simple power law model sources, where 4 of these sources have a statistically significant soft component. Among these sources, we find the presence of a warm absorber statistically significant for only one Seyfert 1 source, contrasting with the ASCA results of \citet{rey97} and \citet{geo98}, who find signatures of warm absorption in half or more of their Seyfert 1 samples at similar redshifts. Additionally, the remaining sources (14/22) have more complex spectra, well-fit by an absorbed power law at E>2.0E > 2.0 keV. Five of the complex sources are classified as Compton-thick candidates. Further, we find four more sources with properties consistent with the hidden/buried AGN reported by Ueda {\it et al.} (2007). Finally, we include a comparison of the {\it XMM-Newton} EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.Comment: 39 pages, 16 figures, accepted to Ap

    A Chandra observation of the long-duration X-ray transient KS 1731-260 in quiescence: too cold a neutron star?

    Get PDF
    After more than a decade of actively accreting at about a tenth of the Eddington critical mass accretion rate, the neutron-star X-ray transient KS 1731-260 returned to quiescence in early 2001. We present a Chandra/ACIS-S observation taken several months after this transition. We detected the source at an unabsorbed flux of ~2 x 10^{-13} erg/cm^2/s (0.5-10 keV). For a distance of 7 kpc, this results in a 0.5-10 keV luminosity of ~1 x 10^{33} erg/s and a bolometric luminosity approximately twice that. This quiescent luminosity is very similar to that of the other quiescent neutron star systems. However, if this luminosity is due to the cooling of the neutron star, this low luminosity may indicate that the source spends at least several hundreds of years in quiescence in between outbursts for the neutron star to cool. If true, then it might be the first such X-ray transient to be identified and a class of hundreds of similar systems may be present in the Galaxy. Alternatively, enhanced neutrino cooling could occur in the core of the neutron star which would cool the star more rapidly. However, in that case the neutron star in KS 1731-260 would be more massive than those in the prototypical neutron star transients (e.g., Aql X-1 or 4U 1608-52).Comment: Accepted for publicaton in ApJ letters, 13 September 200

    Imaging X-ray, Optical, and Infrared Observations of the Transient Anomalous X-ray Pulsar XTE J1810-197

    Full text link
    We report X-ray imaging, timing, and spectral studies of XTE J1810-197, a 5.54s pulsar discovered by Ibrahim et al. (2003) in recent RXTE observations. In a set of short exposures with the Chandra HRC camera we detect a strongly modulated signal (55+/-4% pulsed fraction) with the expected period located at (J2000) 18:09:51.08, -19:43:51.7, with a uncertainty radius of 0.6 arcsec (90% C.L.). Spectra obtained with XMM-Newton are well fitted by a two-component model that typically describes anomalous X-ray pulsars (AXPs), an absorbed blackbody plus power law with parameters kT = 0.67+/-0.01 keV, Gamma=3.7+/-0.2, N_H=(1.05+/-0.05)E22 cm^-2, and Fx(0.5-10 keV) = 3.98E-11 ergs/cm2/s. Alternatively, a 2T blackbody fit is just as acceptable. The location of CXOU J180951.1-194351 is consistent with a point source seen in archival Einstein, Rosat, & ASCA images, when its flux was nearly two orders-of-magnitude fainter, and from which no pulsations are found. The spectrum changed dramatically between the "quiescent" and "active" states, the former can be modeled as a softer blackbody. Using XMM timing data, we place an upper limit of 0.03 lt-s on any orbital motion in the period range 10m-8hr. Optical and infrared images obtained on the SMARTS 1.3m telescope at CTIO show no object in the Chandra error circle to limits V=22.5, I=21.3, J=18.9, & K=17.5. Together, these results argue that CXOU J180951.1-194351 is an isolated neutron star, one most similar to the transient AXP AX J1844.8-0256. Continuing study of XTE J1810-197 in various states of luminosity is important for understanding and possibly unifying a growing class of isolated, young neutron stars that are not powered by rotation.Comment: 12 pages, 7 figures, AAS LaTex, uses emulateapj5.sty. Updated to include additional archival data and a new HRC observation. To appear in The Astrophysical Journa

    Discovery of a Second Millisecond Accreting Pulsar: XTE J1751-305

    Get PDF
    We report the discovery by the RXTE PCA of a second transient accreting millisecond pulsar, XTE J1751-305, during regular monitoring observations of the galactic bulge region. The pulsar has a spin frequency of 435 Hz, making it one of the fastest pulsars. The pulsations contain the signature of orbital Doppler modulation, which implies an orbital period of 42 minutes, the shortest orbital period of any known radio or X-ray millisecond pulsar. The mass function, f_x = (1.278 +/- 0.003) x 10^{-6} M_sun, yields a minimum mass for the companion of between 0.013 and 0.017 M_sun, depending on the mass of the neutron star. No eclipses were detected. A previous X-ray outburst in June, 1998, was discovered in archival All-Sky Monitor data. Assuming mass transfer in this binary system is driven by gravitational radiation, we constrain the orbital inclination to be in the range 30-85 deg, and the companion mass to be 0.013-0.035 M_sun. The companion is most likely a heated helium dwarf. We also present results from the Chandra HRC-S observations which provide the best known position of XTE J1751-305.Comment: Astrophysical Journal Letters, Accepted, (AASTeX

    The long-term evolution of the spin, pulse shape, and orbit of the accretion-powered millisecond pulsar SAX J1808.4-3658

    Full text link
    We present a 7 yr timing study of the 2.5 ms X-ray pulsar SAX J1808.4-3658, an X-ray transient with a recurrence time of ~2 yr, using data from the Rossi X-ray Timing Explorer covering 4 transient outbursts (1998-2005). We verify that the 401 Hz pulsation traces the spin frequency fundamental and not a harmonic. Substantial pulse shape variability, both stochastic and systematic, was observed during each outburst. Analysis of the systematic pulse shape changes suggests that, as an outburst dims, the X-ray "hot spot" on the pulsar surface drifts longitudinally and a second hot spot may appear. The overall pulse shape variability limits the ability to measure spin frequency evolution within a given X-ray outburst (and calls previous nudot measurements of this source into question), with typical upper limits of |nudot| < 2.5x10^{-14} Hz/s (2 sigma). However, combining data from all the outbursts shows with high (6 sigma) significance that the pulsar is undergoing long-term spin down at a rate nudot = (-5.6+/-2.0)x10^{-16} Hz/s, with most of the spin evolution occurring during X-ray quiescence. We discuss the possible contributions of magnetic propeller torques, magnetic dipole radiation, and gravitational radiation to the measured spin down, setting an upper limit of B < 1.5x10^8 G for the pulsar's surface dipole magnetic field and and Q/I < 5x10^{-9} for the fractional mass quadrupole moment. We also measured an orbital period derivative of Pdot = (3.5+/-0.2)x10^{-12} s/s. This surprising large Pdot is reminiscent of the large and quasi-cyclic orbital period variation observed in the so-called "black widow" millisecond radio pulsars, supporting speculation that SAX J1808.4-3658 may turn on as a radio pulsar during quiescence. In an appendix we derive an improved (0.15 arcsec) source position from optical data.Comment: 22 pages, 10 figures; accepted for publication in Ap
    • …
    corecore