59 research outputs found

    Fluctuations in a diffusive medium with gain

    Full text link
    We present a stochastic model for amplifying, diffusive media like, for instance, random lasers. Starting from a simple random-walk model, we derive a stochastic partial differential equation for the energy field with contains a multiplicative random-advection term yielding intermittency and power-law distributions of the field itself. Dimensional analysis indicate that such features are more likely to be observed for small enough samples and in lower spatial dimensions

    A study of random laser modes in disordered photonic crystals

    Full text link
    We studied lasing modes in a disordered photonic crystal. The scaling of the lasing threshold with the system size depends on the strength of disorder. For sufficiently large size, the minimum of the lasing threshold occurs at some finite value of disorder strength. The highest random cavity quality factor was comparable to that of an intentionally introduced single defect. At the minimum, the lasing threshold showed a super-exponential decrease with the size of the system. We explain it through a migration of the lasing mode frequencies toward the photonic bandgap center, where the localization length takes the minimum value. Random lasers with exponentially low thresholds are predicted.Comment: 4 pages, 4 figure

    Effects of Spatially Nonuniform Gain on Lasing Modes in Weakly Scattering Random Systems

    Full text link
    A study on the effects of optical gain nonuniformly distributed in one-dimensional random systems is presented. It is demonstrated numerically that even without gain saturation and mode competition, the spatial nonuniformity of gain can cause dramatic and complicated changes to lasing modes. Lasing modes are decomposed in terms of the quasi modes of the passive system to monitor the changes. As the gain distribution changes gradually from uniform to nonuniform, the amount of mode mixing increases. Furthermore, we investigate new lasing modes created by nonuniform gain distributions. We find that new lasing modes may disappear together with existing lasing modes, thereby causing fluctuations in the local density of lasing states.Comment: 26 pages, 10 figures (quality reduced for arXiv

    ELECTRO-ACOUSTIC ANALOGIES BETWEEN THERMOELASTIC COMPONENT OF THE PHOTOACOUSTIC SIGNAL AND LOW-PASS RC FILTER

    Get PDF
    This paper presents a new approach to the thermal characterization of aluminum, based on the electro-acoustic analogy between the thermoelastic component of the photoacoustic signal and the passive RC low-pass filter. The analogies were used to calculate the characteristic thermoelastic cut-off frequencies of the photoacoustic component and obtain their relationship with the thickness of the aluminum samples. Detailed numerical analysis showed that the required relationship is linear in the log-log scale and can serve as a reference curve for the given material. The results of the numerical analysis were also confirmed experimentally

    Statistical regimes of random laser fluctuations

    Get PDF
    Statistical fluctuations of the light emitted from amplifying random media are studied theoretically and numerically. The characteristic scales of the diffusive motion of light lead to Gaussian or power-law (Levy) distributed fluctuations depending on external control parameters. In the Levy regime, the output pulse is highly irregular leading to huge deviations from a mean--field description. Monte Carlo simulations of a simplified model which includes the population of the medium, demonstrate the two statistical regimes and provide a comparison with dynamical rate equations. Different statistics of the fluctuations helps to explain recent experimental observations reported in the literature.Comment: Revised version, resubmitted to Physical Review

    Computationally intelligent characterization of a photoacoustic detector

    Get PDF
    Artificial neural networks as machine learning techniques have proven to be suitable tools for intelligent decision making. This paper presents the application of artificial neural networks for fast and precise characterization of electret microphones by photoacoustic measurements based on optical generation of sound. The transfer function of this type of devices is usually not determined precisely enough by the producers, especially phase transfer function, because such detectors are not widely applied in scientific experiments but are rather used in audio techniques where amplitude transfer function is more important. The distorted photoacoustic experimental signal, influenced by the measurement set-up in a non-linear manner, represents the input of our model, while the outputs are the detector characteristics. The model consists of two neural networks: the first one for the classification of the detector type and the second one for the determination of the detector parameters, related to its electronic and geometric features. Based on this approach and the theoretical model, relying on the acoustics of small volumes, the parameters and transfer characteristics for several microphones are obtained and compared to the characteristics provided by their producers. It has been shown that the suggested method results in much better detector characterization than the one provided in the official specifications. This could be significant not only for scientific applications of microphones but also for their design and applications in audio techniques.VII International School and Conference on Photonics : PHOTONICA2019 : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 26-30; Belgrad
    corecore