243 research outputs found

    A Temporal Logic for Hyperproperties

    Full text link
    Hyperproperties, as introduced by Clarkson and Schneider, characterize the correctness of a computer program as a condition on its set of computation paths. Standard temporal logics can only refer to a single path at a time, and therefore cannot express many hyperproperties of interest, including noninterference and other important properties in security and coding theory. In this paper, we investigate an extension of temporal logic with explicit path variables. We show that the quantification over paths naturally subsumes other extensions of temporal logic with operators for information flow and knowledge. The model checking problem for temporal logic with path quantification is decidable. For alternation depth 1, the complexity is PSPACE in the length of the formula and NLOGSPACE in the size of the system, as for linear-time temporal logic

    Graph Representations for Higher-Order Logic and Theorem Proving

    Full text link
    This paper presents the first use of graph neural networks (GNNs) for higher-order proof search and demonstrates that GNNs can improve upon state-of-the-art results in this domain. Interactive, higher-order theorem provers allow for the formalization of most mathematical theories and have been shown to pose a significant challenge for deep learning. Higher-order logic is highly expressive and, even though it is well-structured with a clearly defined grammar and semantics, there still remains no well-established method to convert formulas into graph-based representations. In this paper, we consider several graphical representations of higher-order logic and evaluate them against the HOList benchmark for higher-order theorem proving

    systems

    Get PDF
    Verification of partial-information probabilisti

    Efficient Approximation of Optimal Control for Continuous-Time Markov Games

    Get PDF
    We study the time-bounded reachability problem for continuous time Markov decision processes (CTMDPs) and games (CTMGs). Existing techniques for this problem use discretization techniques to break time into discrete intervals, and optimal control is approximated for each interval separately. Current techniques provide an accuracy of O(epsilon^2) on each interval, which leads to an infeasibly large number of intervals. We propose a sequence of approximations that achieve accuracies of O(epsilon^3), O(epsilon^4), and O(epsilon^5), that allow us to drastically reduce the number of intervals that are considered. For CTMDPs, the resulting algorithms are comparable to the heuristic approach given by Buckholz and Schulz, while also being theoretically justified. All of our results generalise to CTMGs, where our results yield the first practically implementable algorithms for this problem. We also provide positional strategies for both players that achieve similar error bounds
    • …
    corecore