243 research outputs found
A Temporal Logic for Hyperproperties
Hyperproperties, as introduced by Clarkson and Schneider, characterize the
correctness of a computer program as a condition on its set of computation
paths. Standard temporal logics can only refer to a single path at a time, and
therefore cannot express many hyperproperties of interest, including
noninterference and other important properties in security and coding theory.
In this paper, we investigate an extension of temporal logic with explicit path
variables. We show that the quantification over paths naturally subsumes other
extensions of temporal logic with operators for information flow and knowledge.
The model checking problem for temporal logic with path quantification is
decidable. For alternation depth 1, the complexity is PSPACE in the length of
the formula and NLOGSPACE in the size of the system, as for linear-time
temporal logic
Graph Representations for Higher-Order Logic and Theorem Proving
This paper presents the first use of graph neural networks (GNNs) for
higher-order proof search and demonstrates that GNNs can improve upon
state-of-the-art results in this domain. Interactive, higher-order theorem
provers allow for the formalization of most mathematical theories and have been
shown to pose a significant challenge for deep learning. Higher-order logic is
highly expressive and, even though it is well-structured with a clearly defined
grammar and semantics, there still remains no well-established method to
convert formulas into graph-based representations. In this paper, we consider
several graphical representations of higher-order logic and evaluate them
against the HOList benchmark for higher-order theorem proving
Efficient Approximation of Optimal Control for Continuous-Time Markov Games
We study the time-bounded reachability problem for continuous time Markov decision processes (CTMDPs) and games (CTMGs). Existing techniques for this problem use discretization techniques to break time into discrete intervals, and optimal control is approximated for each interval separately. Current techniques provide an accuracy of O(epsilon^2) on each interval, which leads to an infeasibly large number of intervals. We propose a sequence of approximations that achieve accuracies of O(epsilon^3), O(epsilon^4), and O(epsilon^5), that allow us to drastically reduce the number of intervals that are considered. For CTMDPs, the resulting algorithms are comparable to the heuristic approach given by Buckholz and Schulz, while also being theoretically justified. All of our results generalise to CTMGs, where our results yield the first practically implementable algorithms for this problem. We also provide positional strategies for both players that achieve similar error bounds
- …