306 research outputs found

    Using lipidomics to reveal details of lipid accumulation in developing seeds from oilseed rape (Brassica napus L.)

    Get PDF
    With dwindling available agricultural land, concurrent with increased demand for oil, there is much current interest in raising oil crop productivity. We have been addressing this issue by studying the regulation of oil accumulation in oilseed rape (Brassica napus L). As part of this research we have carried out a detailed lipidomic analysis of developing seeds. The molecular species distribution in individual lipid classes revealed quite distinct patterns and showed where metabolic connections were important. As the seeds developed, the molecular species distributions changed, especially in the period of early (20 days after flowering, DAF) to mid phase (27DAF) of oil accumulation. The patterns of molecular species of diacylglycerol, phosphatidylcholine and acyl-CoAs were used to predict the possible relative contributions of diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase to triacylglycerol production. Our calculations suggest that DGAT may hold a more important role in influencing the molecular composition of TAG. Enzyme selectivity had an important influence on the final molecular species patterns. Our data contribute significantly to our understanding of lipid accumulation in the world’s third most important oil crop

    Serum Lipidome Signatures of Dogs with Different Endocrinopathies Associated with Hyperlipidemia

    Full text link
    Hyperlipidemia (hypertriglyceridemia, hypercholesterolemia) is a common finding in human and veterinary patients with endocrinopathies (e.g., hypothyroidism and hypercortisolism (Cushing’s syndrome; CS)). Despite emerging use of lipidomics technology in medicine, the lipid profiles of these endocrinopathies have not been evaluated and characterized in dogs. The aim of this study was to compare the serum lipidomes of dogs with naturally occurring CS or hypothyroidism with those of healthy dogs. Serum samples from 39 dogs with CS, 45 dogs with hypothyroidism, and 10 healthy beagle dogs were analyzed using a targeted lipidomics approach with liquid chromatography-mass spectrometry. There were significant differences between the lipidomes of dogs with CS, hypothyroidism, and the healthy dogs. The most significant changes were found in the lysophosphatidylcholines, lysophosphatidylethanolamines, lysophosphatidylinositols, phosphatidylcholines, phosphatidylethanolamines, phosphatidylglycerols, ceramides, and sphingosine 1-phosphates. Lipid alterations were especially pronounced in dogs with hypothyroidism. Several changes suggested a more atherogenic lipid profile in dogs with HT than in dogs with CS. In this study, we found so far unknown effects of naturally occurring hypothyroidism and CS on lipid metabolism in dogs. Our findings provide starting points to further examine differences in occurrence of atherosclerotic lesion formation between the two diseases

    Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast

    Get PDF
    Lipid droplets (LDs) are emerging cellular organelles that are of crucial importance in cell biology and human diseases. In this study, we present our screen of ∼4,700 Saccharomyces cerevisiae mutants for abnormalities in the number and morphology of LDs; we identify 17 fld (few LDs) and 116 mld (many LDs) mutants. One of the fld mutants (fld1) is caused by the deletion of YLR404W, a previously uncharacterized open reading frame. Cells lacking FLD1 contain strikingly enlarged (supersized) LDs, and LDs from fld1Δ cells demonstrate significantly enhanced fusion activities both in vivo and in vitro. Interestingly, the expression of human seipin, whose mutant forms are associated with Berardinelli-Seip congenital lipodystrophy and motoneuron disorders, rescues LD-associated defects in fld1Δ cells. Lipid profiling reveals alterations in acyl chain compositions of major phospholipids in fld1Δ cells. These results suggest that an evolutionally conserved function of seipin in phospholipid metabolism and LD formation may be functionally important in human adipogenesis

    The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis

    Get PDF
    The mitochondrial inner membrane contains different translocator systems for the import of presequence-carrying proteins and carrier proteins. The translocator assembly and maintenance protein 41 (Tam41/mitochondrial matrix protein 37) was identified as a new member of the mitochondrial protein translocator systems by its role in maintaining the integrity and activity of the presequence translocase of the inner membrane (TIM23 complex). Here we demonstrate that the assembly of proteins imported by the carrier translocase, TIM22 complex, is even more strongly affected by the lack of Tam41. Moreover, respiratory chain supercomplexes and the inner membrane potential are impaired by lack of Tam41. The phenotype of Tam41-deficient mitochondria thus resembles that of mitochondria lacking cardiolipin. Indeed, we found that Tam41 is required for the biosynthesis of the dimeric phospholipid cardiolipin. The pleiotropic effects of the translocator maintenance protein on preprotein import and respiratory chain can be attributed to its role in biosynthesis of mitochondrial cardiolipin

    FasR regulates fatty acid biosynthesis and is essential for virulence of Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is the world’s leading cause of death from an infectious disease. One of the main features of this pathogen is the complex and dynamic lipid composition of the cell envelope, which adapts to the variable host environment and defines the fate of infection by actively interacting with and modulating immune responses. However, while much has been learned about the enzymes of the numerous lipid pathways, little knowledge is available regarding the proteins and metabolic signals regulating lipid metabolism during M. tuberculosis infection. In this work, we constructed and characterized a FasR-deficient mutant in M. tuberculosis and demonstrated that FasR positively regulates fas and acpS expression. Lipidomic analysis of the wild type and mutant strains revealed complete rearrangement of most lipid components of the cell envelope, with phospholipids, mycolic acids, sulfolipids, and phthiocerol dimycocerosates relative abundance severely altered. As a consequence, replication of the mutant strain was impaired in macrophages leading to reduced virulence in a mouse model of infection. Moreover, we show that the fasR mutant resides in acidified cellular compartments, suggesting that the lipid perturbation caused by the mutation prevented M. tuberculosis inhibition of phagolysosome maturation. This study identified FasR as a novel factor involved in regulation of mycobacterial virulence and provides evidence for the essential role that modulation of lipid homeostasis plays in the outcome of M. tuberculosis infection.Instituto de BiotecnologíaFil: Mondino, Sonia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario. Laboratory of Physiology and Genetics of Actinomycetes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vazquez, Cristina Lourdes. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cabruja, Matias. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario. Laboratory of Physiology and Genetics of Actinomycetes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sala, Claudia. Ecole Polytechnique Fédérale de Lausanne. Global Health Institute; SuizaFil: Cazenave-Gassiot, Amaury. National University of Singapore. Yong Loo Lin School of Medicine. Department of Biochemistry. Singapore Lipidomics Incubator; SingapurFil: Blanco, Federico Carlos. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wenk, Markus R. National University of Singapore. Yong Loo Lin School of Medicine. Department of Biochemistry. Singapore Lipidomics Incubator; SingapurFil: Bigi, Fabiana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de investigaciones Científicas y Tecnológicas; ArgentinaFil: Cole, Stewart T. Ecole Polytechnique Fédérale de Lausanne. Global Health Institute; SuizaFil: Gramajo, Hugo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario. Laboratory of Physiology and Genetics of Actinomycetes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gago, Gabriela. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario. Laboratory of Physiology and Genetics of Actinomycetes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore