32 research outputs found

    Generation and validation of genome-wide CpG methylation maps of APC<sup>Min</sup> mouse normal and adenoma tissues.

    No full text
    <p>a) Summary of tissue samples used for genome-wide analyses. B6 wildtype (B) and isogenic B6-APC<sup>Min</sup> (APC<sup>Min</sup>)mice were employed for MeDIP-seq (M) and RNA-seq (R) of normal intestinal tissue (B, N) and intestinal adenoma (Ad). b) Visualisation of the adenoma-hypermethylated DMR in <i>Ush1g</i>, using the UCSC browser. Maximal height for visualization was set to rpm = 2 for all MeDIP-seq tracks. Black bars, regions that were validated by SIRPH or bisulfite-pyrosequencing (see below, d, e); green, CpG density; blue, purple, red: MeDIP-seq tracks of B6 mouse normal intestine, APC<sup>Min</sup> mouse normal intestine, and APC<sup>Min</sup> adenoma, respectively. Mice/samples are numbered consecutively. c) Distribution of DMRs in different subgenomic compartments. Odds ratios (i.e. fraction of experimentally observed DMRs divided by relative size of subgenomic compartment) of hyper- and hypomethylation within CpG islands (CGI), promoters that contain or do not contain CGIs, promoter-to-exon junctions, exons, introns, intergenic and repeat regions are given. Dashed line demarcates over- versus underrepresentation. d)–f) Validation of genome-wide MeDIP-seq data, using bisulfite pyrosequencing methodology d) Validation of DMR within <i>Ush1g</i> by bisulfite pyrosequencing using two samples that were subjected to MeDIP-seq and nine additional samples. Percent Methylation of all CpGs across the complete regions is given, colour code as in b). e) High-resolution graphical reconstruction of bisulfite pyrosequencing results for <i>Ush1g</i> DMR region 1, samples B3, N5, Ad5. Red: Methylated; blue: Unmethylated CpG f) Comparison of MeDIP-seq and bisulfite pyrosequencing data, as shown in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003250#pgen.1003250.s012" target="_blank">Table S4c</a>. y-axis represents MeDIP-seq derived and MEDIPS normalized rms-values (log2 scale) for cross-validated genomic regions from three samples (one sample each B6, APC<sup>Min</sup> normal, APC<sup>Min</sup> adenoma). Box plots depict MeDIP rms values for different methylation classes, as defined by bisulfite pyrosequencing. It is of note that MeDIP-seq procedures cannot detect DMRs with constant reliability over the complete genome, and may under-represent repetitive regions and regions with low CpG density.</p

    A model for stepwise formation of cancer cell CpG epigenomes.

    No full text
    <p>CpG methylation is uniform within the normal cellular hierarchy of the intestine, and PRC2-associated H3K27me3 marks are present in crypt and villus cells (blue, to the left). Upon tumour initiation, recurring CpG methylation patterns form, guided by an instructive mechanism that is linked to PRC2 for hypermethylated sites (blue to green). Further CpG methylation changes occur slowly, probably in a stochastic manner. A fraction of these bestow tumour cells with a selective advantage and are subject to clonal expansion during tumour progression (green to red).</p

    Hypermethylated DMRs are associated with Polycomb targets.

    No full text
    <p>a) Gene Set Enrichment Analysis (GSEA) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003250#pgen.1003250-Subramanian1" target="_blank">[35]</a> is used to probe established epigenetic signatures. Mouse genes were ordered by normal (6 samples) versus adenoma (5 samples) promoter methylation (−1,0 to +0,5 kb). Gene signatures comprising PRC1/2 target genes or mouse homologues of human targets of PRC2 complexes, EED targets, MLL targets or TET1 targets were mapped onto the ordered list, and enrichment at the extremes (hypo- or hypermethylation) was assessed. PRC and EED targets were found strongly enriched among hypermethylated promoters, while no enrichment was detected for MLL targets. TET1 targets were found weakly enriched among hypermethylated promoters, probably due to their known association with PRC complexes, and prevalence at CpG-rich sites <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003250#pgen.1003250-Williams1" target="_blank">[34]</a>. Enrichment score graphs (top, green), signature gene distributions (black line graphs, below ES curves), p-values and false discovery rates (FDRs) are given. Significance cut-offs were P<0.05, FDR<0.25. b) Analysis of H3K27me3 marks in chromatin of mouse intestinal epithelium (n = 4 biological replicates) and adenoma (n = 3), using chromatin immunoprecipitation, followed by qPCR. black bars: Immunoprecipitated chromatin, grey: Input chromatin. Error bars give standard deviation. c) Expression of genes coding for PRC2 components or DNA methyl transferases, as determined by RNA-seq. Gene expression is colour-coded: red, high relative expression; blue, low relative expression. d) Immunohistochemical staining of EED in mouse intestine and adenoma. Dotted line demarcates normal intestinal tissue from adenoma. Adenoma contains higher levels of cytoplasmic and nuclear EED protein. e) Immunofluorescence analysis of DNMT1 in a section of normal intestine and adjacent adenoma of the mouse. Adenoma displays distinct nuclear fluorescence for DNMT1. Scale bar is 50 µm.</p

    A core set of APC<sup>Min</sup> adenoma-specific CpG methylation patterns is conserved in human colon cancer.

    No full text
    <p>a) GSEA identifies methylation changes of mouse adenoma in human colon cancer. Gene signatures comprise genes with promoter hypo- or hypermethylation in mouse adenoma (see also <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003250#pgen-1003250-g004" target="_blank">Figure 4a</a>, <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003250#pgen.1003250.s013" target="_blank">Table S5</a>), genes were ordered by directional methylation changes in human colon cancer (normal tissue versus carcinoma). Mouse and human gene homologues were matched using ENSEMBL Biomart (approx. 14300 unique orthologue pairs were identified). b) Promoter hypo- and hypermethlyation is conserved between mouse APC<sup>Min</sup> adenoma and human colon cancer. Genes were selected from those that are significantly hyper- or hypomethylated in APC<sup>Min</sup> adenoma. Conserved genes were identified as the core enrichment group of GSEA analysis in a). Figure shows top eleven hypo- and hypermethylated genes in human colon cancer. blue: low relative methylation; red: high relative methylation.</p

    CpG methylation differentiates normal epithelial cell types from adenoma.

    No full text
    <p>a) Schematic representation of intestinal tissues and cell types. Differentiated villus cells are the prevailing component of bulk normal tissue samples. b) Colour-coded table of CpG methylation analyses of 11 DMRs, using bisulfite pyrosequencing. <i>Cd133</i> is an intestinal stem cell and cancer stem cell marker. <i>Dusp6</i> to <i>Slc25a28</i> represent adenoma hypomethylated DMRs, <i>Ush1g</i>_1 to <i>Vdr</i> represent adenoma hypermethylated DMRs. Percent CpG methylation within the regions are given as numbers and colour-code. Dark blue, <20% CpG methylation; light blue, 20–50% CpG methylation, light red, 50–80% CpG methylation; bright red, >80% methylation. c) Hierarchical clustering of methylation data (as shown in b) separates adenoma from normal tissue and cell preparations. Pearson correlation was employed.</p

    Differential gene methylation and differential gene transcription in adenoma do not correlate extensively.

    No full text
    <p>a)–b) Venn diagrams displaying numbers of transcriptionally regulated and differentially methylated genes. Cut-off criteria were FDR<0.001 for transcriptional regulation, and P<0.01 for methylation (calculation using edgeR). a) Genes that display differential methylation of promoter (−1.0 to +0.5 bk relative to transcription start site) b) Genes that display differential gene body methylation. c) GSEA analyses of gene signatures comprising Wnt targets, ISC-, proliferative- and differentiated cell-specific genes. Left panels: analysis of gene activity, as assessed by RNA-seq; middle and right panels: analysis of promoter or gene body methylation. Data is given as described in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003250#pgen-1003250-g002" target="_blank">Figure 2a</a>. d) Relative gene expression and promoter methylation data for 31 selected epigenetically regulated tumour suppressor genes. Fold change between normal and adenoma is given. <i>Crabp1</i> and <i>Runx3</i> are both, promoter hypermethylated and transcriptionally down-regulated. Asterisk denotes P<0.05.</p

    Delayed cytopathic onset of VOC Alpha SARS-CoV-2 infection.

    No full text
    Vero E6 cells were infected with B.1, VOC Alpha/v1, and VOC Alpha/v2 (MOI 0.001). Onset of CPE was monitored by live cell imaging until 70 hours postinfection. CPE, cytopathogenic effect; MOI, multiplicity of infection; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; VOC, variant of concern. (MP4)</p

    VOC Alpha and B.1 efficiently dampen induction of innate immunity in hBAECs.

    No full text
    hBAECs were infected with B.1 or VOC Alpha (MOI of 0.5) and cell lysates were generated at the indicated time points followed by total RNA extraction. The experiment was performed with cells derived from 1–5 adult donors and that were infected in duplicates. (A) Cell-associated expression of envelope in hBAECs during the early phase of infection determined by Q-RT-PCR. TBP was used for normalization. (B) Cell-associated expression of sgN in hBAECs during an early phase of infection determined by Q-RT-PCR. (C–I) Expression of the indicated genes was determined by Q-RT-PCR. Shown is the mean fold change +/− SD. (J) Relative change (to preinfection) of cytokines and chemokines concentration in the basal medium of infected hBAECs (MOI 0.5). Concentration of cytokines and chemokines was determined by MagPix Luminex technology. Paired t tests were conducted between B.1 and VOC Alpha-infected groups and scored negative. AEC, airway epithelial cells; hBAEC, human bronchial airway epithelial cell; MOI, multiplicity of infection; Q-RT-PCR, quantitative real-time PCR; sgN, subgenomic nucleocapsid; TBP, TATA-binding protein; VOC, variant of concern. See S1 Data.</p

    Relative sgRNA level normalized to total RNA reads and infection efficiency in B.1- and VOC Alpha-infected Calu-3 cells.

    No full text
    (A) RNA-seq analysis was conducted from total cell lysates that were obtained 24 hours postinfection to quantify sgRNA proportions in SARS-CoV-2-infected cells (MOI of 2). Canonical, as well as ORF9b and N* sgRNAs were quantified from the RNA-seq dataset. Data were normalized to total RNA reads. (B, C) Number of SARS-CoV-2 nucleocapsid (N)-positive Calu-3 cells was determined by flow cytometry. Calu-3 were left either UI or were infected with B.1 and VOC Alpha (MOI of 2) for 24 hours, permeabilized and immunostained with rabbit-anti-SARS-CoV-2 nucleocapsid antibody, followed by goat anti-rabbit Alexa 488 secondary antibody. (B) Percentage of SARS-CoV-2 N-positive cells. (C) Gating strategy of living-, single-, and N-positive cells is depicted for UI, B.1-, and VOC Alpha-infected cells. MOI, multiplicity of infection; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; sgRNA, subgenomic RNA; UI, uninfected; VOC, variant of concern. See S1 Data. (TIF)</p
    corecore