21 research outputs found

    Rotating skyrmion lattices by spin torques and field or temperature gradients

    Full text link
    Chiral magnets like MnSi form lattices of skyrmions, i.e. magnetic whirls, which react sensitively to small electric currents j above a critical current density jc. The interplay of these currents with tiny gradients of either the magnetic field or the temperature can induce a rotation of the magnetic pattern for j>jc. Either a rotation by a finite angle of up to 15 degree or -- for larger gradients -- a continuous rotation with a finite angular velocity is induced. We use Landau-Lifshitz-Gilbert equations extended by extra damping terms in combination with a phenomenological treatment of pinning forces to develop a theory of the relevant rotational torques. Experimental neutron scattering data on the angular distribution of skyrmion lattices suggests that continuously rotating domains are easy to obtain in the presence of remarkably small currents and temperature gradients.Comment: 12 pages, 10 figure

    Observation of Long-Lived Muonic Hydrogen in the 2S State

    Get PDF
    The kinetic energy distribution of ground state muonic hydrogen atoms mu-p(1S) is determined from time-of-flight spectra measured at 4, 16, and 64 hPa H2 room-temperature gas. A 0.9 keV-component is discovered and attributed to radiationless deexcitation of long-lived mu-p(2S) atoms in collisions with H2 molecules. The analysis reveals a relative population of about 1%, and a pressure-dependent lifetime (e.g. (30.4 +21.4 -9.7) ns at 64 hPa) of the long-lived mu-p(2S) population, equivalent to a 2S-quench rate in mu-p(2S) + H2 collisions of (4.4 +2.1 -1.8) 10^11 s^-1 at liquid hydrogen density.Comment: 4 pages, 2 figures, accepted for publication in Physical Review Letter

    Skyrmion Hall Effect Revealed by Direct Time-Resolved X-Ray Microscopy

    Full text link
    Magnetic skyrmions are highly promising candidates for future spintronic applications such as skyrmion racetrack memories and logic devices. They exhibit exotic and complex dynamics governed by topology and are less influenced by defects, such as edge roughness, than conventionally used domain walls. In particular, their finite topological charge leads to a predicted "skyrmion Hall effect", in which current-driven skyrmions acquire a transverse velocity component analogous to charged particles in the conventional Hall effect. Here, we present nanoscale pump-probe imaging that for the first time reveals the real-time dynamics of skyrmions driven by current-induced spin orbit torque (SOT). We find that skyrmions move at a well-defined angle {\Theta}_{SH} that can exceed 30{\deg} with respect to the current flow, but in contrast to theoretical expectations, {\Theta}_{SH} increases linearly with velocity up to at least 100 m/s. We explain our observation based on internal mode excitations in combination with a field-like SOT, showing that one must go beyond the usual rigid skyrmion description to unravel the dynamics.Comment: pdf document arxiv_v1.1. 24 pages (incl. 9 figures and supplementary information

    Early γGT and bilirubin levels as biomarkers for regeneration and outcomes in damaged bile ducts after liver transplantation

    Get PDF
    Background Early patient and allograft survival after liver transplantation (LT) depend primarily on parenchymal function, but long-term allograft success relies often on biliary-tree function. We examined parameters related to cholangiocyte damage that predict poor long-term LT outcomes after donation after brain death (DBD). Methods Sixty bile ducts (BD) were assessed by a BD damage-score and divided into groups with “major” BD-damage (n = 33) and “no relevant” damage (n = 27) during static cold storage. Patients with “major” BD damage were further investigated by measuring biliary excretion parameters in the first 14 days post-LT (followed-up for 60-months). Results Patients who received LT showing “major” BD damage had significantly worse long-term patient survival, versus grafts with “no relevant” damage (p = .03). When “major” BD damage developed, low bilirubin levels (p = .012) and high gamma-glutamyl transferase (GGT)/bilirubin ratio (p = .0003) were evident in the early post-LT phase (7–14 days) in patients who survived (> 60 months), compared to those who did not. “High risk” patients with bile duct damage and low GGT/bilirubin ratio had significantly shorter overall survival (p < .0001). Conclusions Once “major” BD damage occurs, a high GGT/bilirubin ratio in the early post-operative phase is likely indicator of liver and cholangiocyte regeneration, and thus a harbinger of good overall outcomes. “Major” BD damage without markers of regeneration identifies LT patients that could benefit from future repair therapies

    Deceleration during 'real life' motor vehicle collisions – a sensitive predictor for the risk of sustaining a cervical spine injury?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The predictive value of trauma impact for the severity of whiplash injuries has mainly been investigated in sled- and crash-test studies. However, very little data exist for real-life accidents. Therefore, the predictive value of the trauma impact as assessed by the change in velocity of the car due to the collision (ΔV) for the resulting cervical spine injuries were investigated in 57 cases after real-life car accidents.</p> <p>Methods</p> <p>ΔV was determined for every car and clinical findings related to the cervical spine were assessed and classified according to the Quebec Task Force (QTF).</p> <p>Results</p> <p>In our study, 32 (56%) subjects did not complain about symptoms and were therefore classified as QTF grade 0; 25 (44%) patients complained of neck pain: 8 (14%) were classified as QTF grade I, 6 (10%) as QTF grade II, and 11 (19%) as QTF grade IV. Only a slight correlation (r = 0.55) was found between the reported pain and ΔV. No relevant correlation was found between ΔV and the neck disability index (r = 0.46) and between ΔV and the QTF grade (r = 0.45) for any of the collision types. There was no ΔV threshold associated with acceptable sensitivity and specificity for the prognosis of a cervical spine injury.</p> <p>Conclusion</p> <p>The results of this study indicate that ΔV is not a conclusive predictor for cervical spine injury in real-life motor vehicle accidents. This is of importance for surgeons involved in medicolegal expertise jobs as well as patients who suffer from whiplash-associated disorders (WADs) after motor vehicle accidents.</p> <p>Trial registration</p> <p>The study complied with applicable German law and with the principles of the Helsinki Declaration and was approved by the institutional ethics commission.</p

    TSPO acts as an immune resistance gene involved in the T cell mediated immune control of glioblastoma

    Get PDF
    Glioblastoma (GB) IDH-wildtype is the most malignant primary brain tumor. It is particularly resistant to current immunotherapies. Translocator protein 18 kDa (TSPO) is upregulated in GB and correlates with malignancy and poor prognosis, but also with increased immune infiltration. Here, we studied the role of TSPO in the regulation of immune resistance of human GB cells. The role of TSPO in tumor immune resistance was experimentally determined in primary brain tumor initiating cells (BTICs) and cell lines through genetic manipulation of TSPO expression and subsequent cocultures with antigen specific cytotoxic T cells and autologous tumor-infiltrating T cells. Death inducing intrinsic and extrinsic apoptotic pathways affected by TSPO were investigated. TSPO-regulated genes mediating apoptosis resistance in BTICs were identified through gene expression analysis and subsequent functional analyses. TSPO transcription in primary GB cells correlated with CD8+ T cell infiltration, cytotoxic activity of T cell infiltrate, expression of TNFR and IFNGR and with the activity of their downstream signalling pathways, as well as with the expression of TRAIL receptors. Coculture of BTICs with tumor reactive cytotoxic T cells or with T cell-derived factors induced TSPO up-regulation through T cell derived TNFα and IFNγ. Silencing of TSPO sensitized BTICs against T cell-mediated cytotoxicity. TSPO selectively protected BTICs against TRAIL-induced apoptosis by regulating apoptosis pathways. TSPO also regulated the expression of multiple genes associated with resistance against apoptosis. We conclude that TSPO expression in GB is induced through T cell-derived cytokines TNFα and IFNγ and that TSPO expression protects GB cells against cytotoxic T cell attack through TRAIL. Our data thereby provide an indication that therapeutic targeting of TSPO may be a suitable approach to sensitize GB to immune cell-mediated cytotoxicity by circumventing tumor intrinsic TRAIL resistance

    Transforming scholarship in the archives through handwritten text recognition:Transkribus as a case study

    Get PDF
    Purpose: An overview of the current use of handwritten text recognition (HTR) on archival manuscript material, as provided by the EU H2020 funded Transkribus platform. It explains HTR, demonstrates Transkribus, gives examples of use cases, highlights the affect HTR may have on scholarship, and evidences this turning point of the advanced use of digitised heritage content. The paper aims to discuss these issues. - Design/methodology/approach: This paper adopts a case study approach, using the development and delivery of the one openly available HTR platform for manuscript material. - Findings: Transkribus has demonstrated that HTR is now a useable technology that can be employed in conjunction with mass digitisation to generate accurate transcripts of archival material. Use cases are demonstrated, and a cooperative model is suggested as a way to ensure sustainability and scaling of the platform. However, funding and resourcing issues are identified. - Research limitations/implications: The paper presents results from projects: further user studies could be undertaken involving interviews, surveys, etc. - Practical implications: Only HTR provided via Transkribus is covered: however, this is the only publicly available platform for HTR on individual collections of historical documents at time of writing and it represents the current state-of-the-art in this field. - Social implications: The increased access to information contained within historical texts has the potential to be transformational for both institutions and individuals. - Originality/value: This is the first published overview of how HTR is used by a wide archival studies community, reporting and showcasing current application of handwriting technology in the cultural heritage sector

    Iterative Dynamic Programming&mdash;An Efficient Method for the Validation of Power Flow Control Strategies

    No full text
    The operation of electrical networks, microgrids, or heterogeneous battery systems, especially the dispatch of single units within the system, requires sophisticated power flow control strategies. If objectives such as efficiency are demanded for the operation of the energy system, typical control strategies lack the ability to verify the optimality of the operation. Dynamic programming is a widely used method for determining the global optima of trajectory problems. In the context of energy systems and power flow optimization, it is restricted to applications with a low number of states and decisions. The reason for this is the rapid growth of computational effort with increasing dimensionality of the state and decision space. The approach of iterative dynamic programming (iDP) makes dynamic programming applicable to the planning and benchmarking of complex power flow optimization problems. To illustrate this, a heterogeneous battery energy storage system is introduced for which the iDP optimizes the power split at the point of common coupling to minimize the total cumulative loss of energy. The method can be adopted for a broad range of energy systems such as microgrids, utility grids, or electric vehicles. The applicability is limited only by the computation time, which depends on the model complexity and the length of the time series. To verify the functionality of the iterative dynamic programming, its results are directly compared to those of the standard dynamic programming. The total computation time can be reduced by 98% in the tested scenario. As relevant use cases, static and dynamic methods of power sharing are validated and benchmarked. The iDP offers a novel and computationally efficient method for the design and validation of power flow control strategies
    corecore