3,596 research outputs found

    Quantum Horn's lemma, finite heat baths, and the third law of thermodynamics

    Full text link
    Interactions of quantum systems with their environment play a crucial role in resource-theoretic approaches to thermodynamics in the microscopic regime. Here, we analyze the possible state transitions in the presence of "small" heat baths of bounded dimension and energy. We show that for operations on quantum systems with fully degenerate Hamiltonian (noisy operations), all possible state transitions can be realized exactly with a bath that is of the same size as the system or smaller, which proves a quantum version of Horn's lemma as conjectured by Bengtsson and Zyczkowski. On the other hand, if the system's Hamiltonian is not fully degenerate (thermal operations), we show that some possible transitions can only be performed with a heat bath that is unbounded in size and energy, which is an instance of the third law of thermodynamics. In both cases, we prove that quantum operations yield an advantage over classical ones for any given finite heat bath, by allowing a larger and more physically realistic set of state transitions.Comment: 15+4 pages, 6 figures. Version accepted for publication in Quantu

    Beam Imaging and Luminosity Calibration

    Full text link
    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The xx-yy correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1\%.Comment: Figures added, typos correcte

    Femtosecond photoelectron and photoion spectrometer with vacuum ultraviolet probe pulses

    Full text link
    We describe a setup to study ultrafast dynamics in gas-phase molecules using time-resolved photoelectron and photoion spectroscopy. The vacuum ultraviolet (VUV) probe pulses are generated via strong field high-order harmonic generation from infrared femtosecond laser pulses. The band pass characteristic in transmission of thin indium (In) metal foil is exploited to isolate the 9th9^{\text{th}} harmonic of the 800 nm fundamental (H9, 14 eV, 89 nm) from all other high harmonics. The 9th9^{\text{th}} harmonic is obtained with high conversion efficiencies and has sufficient photon energy to access the complete set of valence electron levels in most molecules. The setup also allows for direct comparison of VUV single-photon probe with 800 nm multi-photon probe without influencing the delay of excitation and probe pulse or the beam geometry. We use a magnetic bottle spectrometer with high collection efficiency for electrons, serving at the same time as a time of flight spectrometer for ions. Characterization measurements on Xe reveal the spectral width of H9 to be 190±60190\pm60 meV and a photon flux of 1107\sim1\cdot10^{7} photons/pulse after spectral filtering. As a first application, we investigate the S1_1 excitation of perylene using time-resolved ion spectra obtained with multi-photon probing and time-resolved electron spectra from VUV single-photon probing. The time resolution extracted from cross-correlation measurements is 65±1065\pm10 fs for both probing schemes and the pulse duration of H9 is found to be 35±835\pm8 fs

    Transport and magnetic properties of La_(1-x)Ca_xMnO_3-films (0.1<x<0.9)

    Full text link
    By laser ablation we prepared thin films of the colossal magnetoresistive compound La_(1-x)Ca_xMnO_3 with doping levels 0.1<x<0.9 on MgO substrates. X-ray diffraction revealed epitaxial growth and a systematic decrease of the lattice constants with doping. The variation of the transport and magnetic properties in this doping series was investigated by SQUID magnetization and electrical transport measurements. For the nonmetallic samples resistances up to 10^13 Ohm have been measured with an electrometer setup. While the transport data indicate polaronic transport for the metallic samples above the Curie temperature the low doped ferromagnetic insulating samples show a variable range hopping like transport at low temperature.Comment: 2 pages, 3 EPS figures, LT22 Proceedings to appear in Physica

    Oscillatory motion of a droplet in an active poroelastic two-phase model

    Full text link
    We investigate flow-driven amoeboid motility as exhibited by microplasmodia of Physarum polycephalum. A poroelastic two-phase model with rigid boundaries is extended to the case of free boundaries and substrate friction. The cytoskeleton is modeled as an active viscoelastic solid permeated by a fluid phase describing the cytosol. A feedback loop between a chemical regulator, active mechanical deformations, and induced flows gives rise to oscillatory and irregular motion accompanied by spatio-temporal contraction patterns. We cover extended parameter regimes of active tension and substrate friction by numerical simulations in one spatial dimension and reproduce experimentally observed oscillation periods and amplitudes. In line with experiments, the model predicts alternating forward and backward ectoplasmatic flow at the boundaries with reversed flow in the center. However, for all cases of periodic and irregular motion, we observe practically no net motion. A simple theoretical argument shows that directed motion is not possible with a spatially independent substrate friction

    Compact DC Modelling of Short-Channel Effects in Organic Thin-Film Transistors

    Get PDF
    Els transistors orgànics de capa fina (TFT) són dispositius prometedors per a les pantalles flexibles de matriu activa i els conjunts de sensors, ja que poden fabricar-se a temperatures de procés relativament baixes i, per tant, no sols en vidre, sinó també en substrats polimèrics. Per a millorar el rendiment dinàmic dels dispositius i circuits TFT , una reducció agressiva de la longitud de canal provoca efectes extrínsecs en els dispositius que han de ser capturats per models compactes. Aquesta tesi presenta models analítics, basats en la física, de la degradació de la pendent subumbral, el roll-off del voltatge llindar i l'efecte DIBL en TFTs coplanars i escalonats que poden ser implementats en qualsevol model compacte de corrent continu arbitrari que estigui definit pel voltatge llindar i la pendent subumbral. Per tant, l'equació diferencial de Laplace es resol per a la geometria coplanar i escalonada aplicant la transformación Schwarz-Cristoffel. Les solucions del potencial serveixen de base per a la definició de les equacions del model. A més, es desenvolupen models compactes de les barreres Schottky dependents de la polarització en les interfícies font/semiconductor i drenador/semiconductor en els TFT coplanars i escalonats, que modelen la injecció i l'ejecció de portadors de càrrega, respectivament, com a corrent d'emissió termoiònica.Los transistores orgánicos de capa fina (TFT) son dispositivos prometedores para las pantallas flexibles de matriz activa y los conjuntos de sensores, ya que pueden fabricarse a temperaturas de proceso relativamente bajas y, por tanto, no sólo en vidrio, sino también en sustratos poliméricos. Para mejorar el rendimiento dinámico de los dispositivos y circuitos TFT, una reducción agresiva de la longitud de los canales provoca efectos extrínsecos en los dispositivos que tienen que ser capturados por modelos compactos. Esta tesis presenta modelos analíticos, basados en la física, de la degradación de la pendiente subumbral, el roll-off del voltaje umbral y el efecto DIBL en TFTs coplanares y escalonados que pueden ser implementados en cualquier modelo compacto de corriente continua arbitrario que esté definido por el voltaje umbral y la pendiente subumbral. Por lo tanto, la ecuación diferencial de Laplace se resuelve para la geometría coplanar y escalonada aplicando la transformación Schwarz-Christoffel. Las soluciones del potencial sirven de base para la definición de las ecuaciones del modelo. Además, se desarrollan modelos compactos de las barreras Schottky dependientes de la polarización en las interfaces fuente/semiconductor y drenador/semiconductor en los TFT coplanares y escalonados, que modelan la inyección y la eyección de portadores de carga, respectivamente, como corriente de emisión termoiónicaOrganic thin-film transistors (TFTs) are promising devices for flexible active-matrix displays and sensor arrays, since they can be fabricated at relatively low process temperatures and thus not only on glass, but also on polymeric substrates. In order to improve the dynamic TFT and circuit performance, an aggressive reduction of the channel length causes extrinsic de-vice effects that have to be captured by compact models. This dissertation presents analytical, physics-based models of the subthreshold-swing degra-dation, the thresholdvoltage roll-off and DIBL effects in coplanar and staggered TFTs that can be implemented in any arbitrary compact dc model that are defined by the threshold voltage and the subthreshold swing. Therefore, Laplace’s differential equation is solved for the coplanar and staggered geometry by applying the Schwarz-Christoffel transformation. The potential solutions serve as a basis for the definition of the model equations. Further-more, compact models of the biasdependent Schottky barriers at the source/semiconductor and drain/semiconductor interfaces in coplanar and staggered TFTs are derived, which model the charge carriers injection and ejection, respectively, as thermionic emission cur-rent. Thereby, in case of the source barrier, the Schottky barrier lowering effect due to im-age charges is captured and therefore, an analytical expression of the electric field at the source barrier is derived

    Second gradient electromagnetostatics: electric point charge, electrostatic and magnetostatic dipoles

    Full text link
    In this paper, we study the theory of second gradient electromagnetostatics as the static version of second gradient electrodynamics. The theory of second gradient electrodynamics is a linear generalization of higher order of classical Maxwell electrodynamics whose Lagrangian is both Lorentz and U(1)-gauge invariant. Second gradient electromagnetostatics is a gradient field theory with up to second-order derivatives of the electromagnetic field strengths in the Lagrangian. Moreover, it possesses a weak nonlocality in space and gives a regularization based on higher-order partial differential equations. From the group theoretical point of view, in second gradient electromagnetostatics the (isotropic) constitutive relations involve an invariant scalar differential operator of fourth order in addition to scalar constitutive parameters. We investigate the classical static problems of an electric point charge, and electric and magnetic dipoles in the framework of second gradient electromagnetostatics, and we show that all the electromagnetic fields (potential, field strength, interaction energy, interaction force) are singularity-free unlike the corresponding solutions in the classical Maxwell electromagnetism as well as in the Bopp-Podolsky theory. The theory of second gradient electromagnetostatics delivers a singularity-free electromagnetic field theory with weak spatial nonlocality.Comment: 32 pages, 7 figure
    corecore