3,012 research outputs found

    Electrolyte solutions at curved electrodes. I. Mesoscopic approach

    Full text link
    Within the Poisson-Boltzmann (PB) approach electrolytes in contact with planar, spherical, and cylindrical electrodes are analyzed systematically. The dependences of their capacitance CC on the surface charge density σ\sigma and the ionic strength II are examined as function of the wall curvature. The surface charge density has a strong effect on the capacitance for small curvatures whereas for large curvatures the behavior becomes independent of σ\sigma. An expansion for small curvatures gives rise to capacitance coefficients which depend only on a single parameter, allowing for a convenient analysis. The universal behavior at large curvatures can be captured by an analytic expression.Comment: accepted for publication in the Journal of Chemical Physic

    Smectic phases in ionic liquid crystals

    Full text link
    Ionic liquid crystals (ILCs) are anisotropic mesogenic molecules which carry charges and therefore combine properties of liquid crystals, e.g., the formation of mesophases, and of ionic liquids, such as low melting temperatures and tiny triple-point pressures. Previous density functional calculations have revealed that the phase behavior of ILCs is strongly affected by their molecular properties, i.e., their aspect ratio, the loci of the charges, and their interaction strengths. Here, we report new findings concerning the phase behavior of ILCs as obtained by density functional theory and Monte Carlo simulations. The most important result is the occurrence of a novel, wide smectic-A phase SAWS_{AW}, at low temperature, the layer spacing of which is larger than that of the ordinary high-temperature smectic-A phase SAS_{A}. Unlike the ordinary smectic SAS_A phase, the structure of the SAWS_{AW} phase consists of alternating layers of particles oriented parallel to the layer normal and oriented perpendicular to it

    Stability of thin liquid films and sessile droplets under confinement

    Full text link
    The stability of nonvolatile thin liquid films and of sessile droplets is strongly affected by finite size effects. We analyze their stability within the framework of density functional theory using the sharp kink approximation, i.e., on the basis of an effective interface Hamiltonian. We show that finite size effects suppress spinodal dewetting of films because it is driven by a long-wavelength instability. Therefore nonvolatile films are stable if the substrate area is too small. Similarly, nonvolatile droplets connected to a wetting film become unstable if the substrate area is too large. This instability of a nonvolatile sessile droplet turns out to be equivalent to the instability of a volatile drop which can attain chemical equilibrium with its vapor.Comment: 14 pages, 13 figure

    Poisson-Boltzmann study of the effective electrostatic interaction between colloids at an electrolyte interface

    Full text link
    The effective electrostatic interaction between a pair of colloids, both of them located close to each other at an electrolyte interface, is studied by employing the full, nonlinear Poisson-Boltzmann (PB) theory within classical density functional theory. Using a simplified yet appropriate model, all contributions to the effective interaction are obtained exactly, albeit numerically. The comparison between our results and those obtained within linearized PB theory reveals that the latter overestimates these contributions significantly at short inter-particle separations. Whereas the surface contributions to the linear and the nonlinear PB results differ only quantitatively, the line contributions show qualitative differences at short separations. Moreover, a dependence of the line contribution on the solvation properties of the two adjacent fluids is found, which is absent within the linear theory. Our results are expected to enrich the understanding of effective interfacial interactions between colloids

    Electrostatic interaction between colloidal particles trapped at an electrolyte interface

    Full text link
    The electrostatic interaction between colloidal particles trapped at the interface between two immiscible electrolyte solutions is studied in the limit of small inter-particle distances. Within an appropriate model exact analytic expressions for the electrostatic potential as well as for the surface and line interaction energies are obtained. They demonstrate that the widely used superposition approximation, which is commonly applied to large distances between the colloidal particles, fails qualitatively at small distances and is quantitatively unreliable even at large distances. Our results contribute to an improved description of the interaction between colloidal particles trapped at fluid interfaces.Comment: Submitte

    Surface properties of fluids of charged platelike colloids

    Full text link
    Surface properties of mixtures of charged platelike colloids and salt in contact with a charged planar wall are studied within density functional theory. The particles are modeled by hard cuboids with their edges constrained to be parallel to the Cartesian axes corresponding to the Zwanzig model and the charges of the particles are concentrated in their centers. The density functional applied is an extension of a recently introduced functional for charged platelike colloids. Analytically and numerically calculated bulk and surface phase diagrams exhibit first-order wetting for sufficiently small macroion charges and isotropic bulk order as well as first-order drying for sufficiently large macroion charges and nematic bulk order. The asymptotic wetting and drying behavior is investigated by means of effective interface potentials which turn out to be asymptotically the same as for a suitable neutral system governed by isotropic nonretarded dispersion forces. Wetting and drying points as well as predrying lines and the corresponding critical points have been located numerically. A crossover from monotonic to non-monotonic electrostatic potential profiles upon varying the surface charge density has been observed. Due to the presence of both the Coulomb interactions and the hard-core repulsions, the surface potential and the surface charge do not vanish simultaneously, i.e., the point of zero charge and the isoelectric point of the surface do not coincide.Comment: 14 pages, submitte

    Effective Landau theory of ferronematics

    Full text link
    An effective Landau-like description of ferronematics, i.e., suspensions of magnetic colloidal particles in a nematic liquid crystal (NLC), is developed in terms of the corresponding magnetization and nematic director fields. The study is based on a microscopic model and on classical density functional theory. Ferronematics are susceptible to weak magnetic fields and they can exhibit a ferromagnetic phase, which has been predicted several decades ago and which has recently been found experimentally. Within the proposed effective Landau theory of ferronematics one has quantitative access, e.g., to the coupling between the magnetization of the magnetic colloids and the nematic director of the NLC. On mesoscopic length scales this generates complex response patterns

    Free Isotropic-Nematic Interfaces in Fluids of Charged Platelike Colloids

    Full text link
    Bulk properties and free interfaces of mixtures of charged platelike colloids and salt are studied within density-functional theory. The particles are modeled by hard cuboids with their edges constrained to be parallel to the artesian axes corresponding to the Zwanzig model. The charges of the particles are concentrated in their center. The density functional is derived by functional integration of an extension of the Debye-H\"uckel pair distribution function with respect to the interaction potential. For sufficiently small macroion charges, the bulk phase diagrams exhibit one isotropic and one nematic phase separated by a first-order phase transition. With increasing platelet charge, the isotropic and nematic binodals are shifted to higher densities. The Donnan potential between the coexisting isotropic and nematic phases is inferred from bulk structure calculations. Non-monotonic density and nematic order parameter profiles are found at a free interface interpolating between the coexisting isotropic and nematic bulk phases. Moreover, electrically charged layers form at the free interface leading to monotonically varying electrostatic potential profiles. Both the widths of the free interfaces and the bulk correlation lengths are approximately given by the Debye length. For fixed salt density, the interfacial tension decreases upon increasing the macroion charge.Comment: 11 pages, submitted to J. Chem. Phy
    • …
    corecore