5,048 research outputs found

    Kinetically Trapped Liquid-State Conformers of a Sodiated Model Peptide Observed in the Gas Phase

    Get PDF
    We investigate the peptide AcPheAla5LysH+, a model system for studying helix formation in the gas phase, in order to fully understand the forces that stabilize the helical structure. In particular, we address the question of whether the local fixation of the positive charge at the peptide's C-terminus is a prerequisite for forming helices by replacing the protonated C-terminal Lys residue by Ala and a sodium cation. The combination of gas-phase vibrational spectroscopy of cryogenically cooled ions with molecular simulations based on density-functional theory (DFT) allows for detailed structure elucidation. For sodiated AcPheAla6, we find globular rather than helical structures, as the mobile positive charge strongly interacts with the peptide backbone and disrupts secondary structure formation. Interestingly, the global minimum structure from simulation is not present in the experiment. We interpret that this is due to high barriers involved in re-arranging the peptide-cation interaction that ultimately result in kinetically trapped structures being observed in the experiment.Comment: 28 pages, 10 figure

    A model for the joint evaluation of burstiness and regularity in oscillatory spike trains

    Get PDF
    Poster presentation: Introduction The ability of neurons to emit different firing patterns is considered relevant for neuronal information processing. In dopaminergic neurons, prominent patterns include highly regular pacemakers with separate spikes and stereotyped intervals, processes with repetitive bursts and partial regularity, and irregular spike trains with nonstationary properties. In order to model and quantify these processes and the variability of their patterns with respect to pharmacological and cellular properties, we aim to describe the two dimensions of burstiness and regularity in a single model framework. Methods We present a stochastic spike train model in which the degree of burstiness and the regularity of the oscillation are described independently and with two simple parameters. In this model, a background oscillation with independent and normally distributed intervals gives rise to Poissonian spike packets with a Gaussian firing intensity. The variability of inter-burst intervals and the average number of spikes in each burst indicate regularity and burstiness, respectively. These parameters can be estimated by fitting the model to the autocorrelograms. This allows to assign every spike train a position in the two-dimensional space described by regularity and burstiness and thus, to investigate the dependence of the firing patterns on different experimental conditions. Finally, burst detection in single spike trains is possible within the model because the parameter estimates determine the appropriate bandwidth that should be used for burst identification. Results and Discussion We applied the model to a sample data set obtained from dopaminergic substantia nigra and ventral tegmental area neurons recorded extracellularly in vivo and studied differences between the firing activity of dopaminergic neurons in wildtype and K-ATP channel knock-out mice. The model is able to represent a variety of discharge patterns and to describe changes induced pharmacologically. It provides a simple and objective classification scheme for the observed spike trains into pacemaker, irregular and bursty processes. In addition to the simple classification, changes in the parameters can be studied quantitatively, also including the properties related to bursting behavior. Interestingly, the proposed algorithm for burst detection may be applicable also to spike trains with nonstationary firing rates if the remaining parameters are unaffected. Thus, the proposed model and its burst detection algorithm can be useful for the description and investigation of neuronal firing patterns and their variability with cellular and experimental conditions

    Experiments to increase the used Energy with the PEGASUS Railgun

    Full text link
    The French-German Research Institute (ISL) has several railguns installed, the largest of these is the PEGASUS accelerator. It is a 6m long, 4x4 cm2 caliber distributed energy supply (DES) railgun. It has a 10 MJ capacitor bank as energy supply attached to it. In the past, this installation was used to accelerate projectiles with a mass of about 300 g to velocities up to 2500 m/s. In the ongoing investigation, it is attempted to accelerate heavier projectiles to velocities above 2000m/s. For this a new type of projectile including a payload section was developed. In this paper the results of the experiments with payload projectiles using a primary energy between 3.8 MJ and 4.8 MJ are discussed.Comment: 6 pages, 11 figures, Submitted to IEEE Transactions on Plasma Science, Special Issue -- Pulsed Power Science & Technology 201
    • …
    corecore