259 research outputs found

    Static and dynamic source identification of trace elements in river and soil environments under anthropogenic activities in the Haraz plain, Northern Iran

    Get PDF
    Unsustainable human activities have disrupted the natural cycle of trace elements, causing the accumulation of chemical pollutants and making it challenging to determine their sources due to interwoven natural and human-induced processes. A novel approach was introduced for identifying the sources and for quantifying the contribution of trace elements discharge from rivers to soils. We integrated fingerprinting techniques, soil and sediment geochemical data, geographically weighted regression model (GWR) and soil quality indices. The FingerPro package and the state-of-the-art tracer selection techniques including the conservative index (CI) and consensus ranking (CR) were used to quantify the relative contribution of different upland sub-watersheds in trace element discharge soil. Our analysis revealed that off-site sources (upland watersheds) and in-site sources (land use) both play an important role in transferring trace elements to the Haraz plain (northern Iran). The unmixing model's results suggest that the Haraz sub-watersheds exhibit a higher contribution to trace elements transfer in the Haraz plain, and therefore, require greater attention in terms of implementing soil and water conservation strategies. However, it is noteworthy that the Babolroud (adjacent to Haraz) exhibited a better performance of the model. A spatial correlation between certain heavy metals, such as As and Cu, and rice cultivation existed. Additionally, we found a significant spatial correlation between Pb and residential areas, particularly in the Amol region. Our result highlights the importance of using advanced spatial statistical techniques, such as GWR, to identify subtle but critical associations between environmental variables and sources of pollution. The methodology used comprehensively identifies dynamic trace element sourcing at the watershed scale, allowing for pollutant source identification and practical strategies for soil and water quality control. Tracer selection techniques (CI and CR) based on conservatives and consensus improve unmixing model accuracy and flexibility for precise fingerprinting

    Meteoric 10Be, 137Cs and 239+240Pu as tracers of long- and medium-term soil erosion—A review

    Full text link
    Isotopes of meteoric 10Be, 137Cs, 239+240Pu have been proposed as a soil redistribution tracer and applied worldwide as an alternative method to classical field-related techniques (e.g., sediment traps). Meteoric 10Be provides information about long-term soil redistribution rates (millennia), while 137Cs and 239+240Pu give medium-term rates (decades). A significant progress in developing new models and approaches for the calculation of erosion rates has been made; thus, we provide a global review (n = 59) of research articles to present these three isotopes (meteoric 10Be, 239+240Pu and 137Cs) as soil erosion markers in different environments and under different land-use types. Understanding the dynamics and behaviours of isotopes in the soil environment is crucial to determine their usefulness as soil erosion tracers; thus, we discuss the chemical–physical behaviour of meteoric 10Be, 137Cs and 239+240Pu in soils. The application of these isotopes sometimes has strong limitations, and we give suggestions on how to overcome them or how to adapt them to a given situation. This review also shows where these isotopic methods can potentially be applied in the future. A lack in knowledge about soil redistribution rates exists particularly in loess-dominated areas where the tillage system has changed or in areas with strong wind erosion

    Clay mineralogy fingerprinting of loess-mantled soils on different underlying substrates in the south-western Poland

    Full text link
    Loess may be integrated into slope deposits at different soil depths and may influence related physical, chemical and mineralogical soil properties. Therefore, tracking the border between deposited loess and underlying materials and estimating the depth of loess penetration is a challenge. Five soils from the Lower Silesia province in south-western Poland having different types of geologic substrate and being covered by loess deposits of various thicknesses were chosen to: 1) trace the origin of phyllosilicates in these heterogeneous soils (loess vs. underlying bedrock); 2) determine the influence of the geologic substrate and the loess mantle on clay mineral transformation in the soil; and 3) relate clay mineralogical traits to soil morphology. The loess consisted of long-distance and local aeolian sources as shown by the Ti/Zr ratios and heavy mineral composition. Geochemical and mineralogical traces of loess were easily detected in the mixed zone and in part also in the basal layer. The loess deposits are characterised by mica, chlorite, kaolinite, interstratified mica-vermiculite or hydroxy-interlayered vermiculite, vermiculite and a minor amount of smectite. Aeolian silt admixture was an important source of chlorite at all sites. The vertical distribution of mica indicated two types of sources — loess input and substrate. Smectite, however, has mostly been inherited from the underlying bedrock (serpentinite, glacio-fluvial deposits and basalt slope sediment) or was formed in the soils from mica or chlorite. Where present in the loess, smectite was only found in small amounts. The presence of kaolinite, HIV and mixed layered mica-vermiculite could be derived either from aeolian input or neoformation and thus actively occurring mineral (trans)formation reactions. Similar to mica, vermiculite was derived from both aeolian input and the geological substrate. The widespread loess deposits in this region rejuvenated the soil formation process, as evidenced by their mineralogical and chemical composition

    Complex patterns of schist tor exposure and surface uplift, Otago (New Zealand)

    Full text link
    Landscapes are subjected to surface denudation during their complex and non-linear evolution. In order to quantify the in situ surface lowering and, thus, denudation or soil erosion rates, new, multi-millennia archives are needed and must be rigorously tested. Large residual rocks, tors, are the basis for the Tor Exhumation Approach. Here we present novel results on meta-sedimentary (schist) rock tors using this approach, which previously has only been applied in granitic terrains. The exhumation patterns of eight schist tors in three landscape locations (valley, ridge, distal) of Otago, New Zealand, were studied using cosmogenic dating. The in situ 10Be ages have high variability along individual vertical tor profiles. Average surface age is 122 ± 12 ka and ranges from 836 ± 89 ka to 19 ± 2 ka. The majority of investigated tors have surfaced during the MIS 5 which was one of the wettest and warmest climate periods. The resulting surface denudation trend of the three locations differs. The valley commenced denudation no earlier than ~200 ka with rates of ~0.22 [m kyr−1] to ~0.02 [m kyr−1]. In contrast, exposure started at the ridge position around 230 ka at ~0.03 [m kyr−1]. An age inversion found in the valley is considered to be the result of mushroom-like exposure by undercutting and repeated rock breakoffs. The distal site tor has been exhumed continuously for ~120 ka at a rate of ~0.2 to ~0.05 [m kyr−1]. We identified a mix of surface emergence patterns of the tors such as continuous-, mushroom-, tafoni- and structural-like. The comparison to modern erosion rates indicates that surface erosion has increased up to a factor of ten during the last few decades. To determine the actual surface uplift, we linked the tor derived surface denudation rates with rock uplift data. The data indicates that the surface uplift rates started to decrease during the Middle Pleistocene (0.04–0.09 [m kyr−1]), remained relatively low during the Late Pleistocene (~0.01 [m kyr−1]) and started to increase again during the Holocene (c. 0.21–0.64 [m kyr−1]). In summary, the emergence pattern of local tors enabled reconstruction of the evolution of Pleistocene-Holocene surfaces in East Otago

    Meteoric 10Be as a tracer of soil redistribution rates and reconstruction tool of loess–mantled soils (SW, Poland)

    Get PDF
    Loess deposits are terrestrial archives that record progressive deposition and erosion events of varying intensities. Data on long-term erosion rates are crucial for tracking changes in the stability of a loess mantle and reconstructing the evolution of loess-enriched soils. We used meteoric 10Be to i) define the factors responsible for its distribution along the profile, ii) determine long-term erosion rates in loess-enriched polygenetic soils characterised by illuviation processes, and iii) evaluate initial soil thickness and stability over time. Distribution of meteoric 10Be along the soil profiles was mainly driven by its translocation with clay particles and accumulation in the illuvial horizons. However, in some cases (loess over serpentinite), the highest meteoric 10Be content was measured in the C horizons which may be related to the longer exposure of serpentinite to meteoric 10Be deposition before the occurrence of a major loess accumulation event. The estimated long-term erosion rates greatly depend on the assumed environmental settings and were in the range of about 0.1–3 t ha−1 yr−1. Based on the soil redistribution rates, we reconstructed the removed loess layer which was from a few dm to about 3 m. The results indicate four main soil evolutionary phases: a) pre-exposure of sediments to meteoric 10Be accumulation; b) formation of thick loess mantles during the Last Glacial Maximum; c) erosion events between 21 and 11.6 ka that significantly shallowed the initial loess mantles; d) pedogenesis (with subsoil clay accumulation) in the Holocene within the thinner relicts of the former Late Pleistocene loess mantle followed by a recent and strong erosional phase due to human impact. These phases are also believed to have occurred in several other areas of Central Europe

    High-resolution record of stable isotopes in soil carbonates reveals environmental dynamics in an arid region (central Iran) during the last 32 ka

    Full text link
    Although central Iran is pivotal for palaeoclimatic correlations, palaeoenvironmental data for this region is very sparse and a reliable chronology for pedogenic features is lacking. We therefore tried to answer the question how the environmental conditions and, in particular, the climate developed over time by using the isotopic signatures of pedogenic carbonates. We present a chronology of pedogenic carbonates in association with stable carbon and oxygen isotopes in both the matrix and coating carbonates of a relict palаeosol (Baharan palaeosol) in central Iran to understand the dynamics of environmental changes in this region during the late Quaternary. The palаeosol experienced several episodes of leaching during pedogenesis as reflected in its morphology (carbonate coatings under the rock fractions) and geochemical characteristics (Ba/Sr ratios). The δ18^{18}O values of both the matrix and coating carbonates in the upper 60 cm (especially in the upper 20 cm) of the pedon are enriched (∼4‰) compared to the subsoil and are mainly related to the impact of evaporation. Moreover, the δ13^{13}C values of the carbonates are in isotopic disequilibrium with the modern vegetation cover (desert shrubs) of the study area and are enriched in different degrees. The carbonates in the top 60 cm are formed by the input of atmospheric CO2_{2} and calcareous dust while deeper carbonates formed in an environment exhibiting a higher contribution of C4_{4} plants. Based on the radiocarbon chronology of carbonate coatings, it seems that three main stages of palaeoenvironmental changes occurred in the region during the last 32 ka. The first stage lasted ca. 5,000 years (between 31.6 and 26.0 ka) and was accompanied by deep leaching under sub-humid climatic conditions and the expansion of C4_{4} plants. Under the dominance of semi-arid conditions during the second stage until the late Holocene, a gradual increase in the δ18^{18}O values and aridity occurred in the region. The last phase in the late Holocene was characterised by the establishment of an arid and evaporative environment with a sparse vegetation cover. A climatic correlation using the oxygen isotopic composition of secondary carbonates from the Baharan palaeosol, Soreq Cave (the Levant) and Hoti Cave (Oman; both having speleothems records) suggested a climatic connection between central Iran and the eastern Mediterranean during the late Pleistocene and between central Iran and northern Oman during the late Holocene

    Effect of climate and vegetation on soil organic carbon, humus fractions, allophanes, impolite, kaolinite, and oxyhydroxides in volcanic soils of Etna (Sicily)

    Full text link
    A soil sequence along an elevational gradient ranging from subtropical to subalpine climate zones in the Etna region (Sicily, southern Italy) was investigated with respect to organic C, kaolinite, and crystalline to noncrystalline Al and Fe phases. Special emphasis was given to the stabilization of soil organic carbon (SOC) and its interaction with the inorganic phases. The soils were variations of Vitric Andosols that developed on a trachy-basaltic lava flow with an age of 15,000 years. Two main vegetation systems dominated the sites: at the lower sites, it was mainly maquis vegetation and, at the higher elevated sites, predominantly coniferous forest. The concentration of SOC in the topsoil, the SOC stocks in the profiles, the humus fractions such as humic and fulvic acids, functional groups and substances of organic matter, imogolite-type materials (ITM), and oxyhydroxides were found to be strongly related to elevation and, thus, climate (precipitation and temperature) and vegetation. The C/N ratio in the topsoil was especially indicative of the vegetation type. The amount of SOC, ITM, and crystalline Fe oxyhydroxides decreased with increasing altitude. Weathering, as related to the proportion of crystalline Fe-oxyhydroxides or the kaolinite concentration in the clay fraction, seemed to be greater at the lower elevated sites. At these sites, maquis vegetation led to a higher accumulation of SOC as compared with the coniferous trees at the higher sites. Fire activity, as indicated by aromatic compounds in the humic acids and by the presence of charcoal in the soil, has most probably influenced several important soil processes. The identification and radiocarbon dating of charcoal revealed evidence that repeated bush fires had played a significant role in soil formation. The better stabilization of SOC at lower altitudes might be due to the specific climatic conditions with a more pronounced change in periods of humidity alternating with periods of droughts and resultant fire activity. The positive correlation between mean annual temperature and SOC content supports such a hypothesis. The climate- and vegetation-dependent stabilization of organic matter in the soil can be ascribed to the proportion of aromatics in the humic acids, to the presence of noncrystalline Al and Fe phases, to the kaolinite concentration, to the amount of clay, and to a lesser extent to the silt fraction

    Revised Quaternary glacial succession and post-LGM recession, southern Wind River Range, Wyoming, USA

    Full text link
    We present here a more complete cosmogenic chronology of Pleistocene glacial deposits for the Wind River Range, Wyoming, USA. Fifty-one new and thirty-nine re-calculated 10Be and 26Al exposure ages from Sinks and North Fork canyons, Stough Basin, Cirque of the Towers and the Temple Lake valley allow us to more tightly constrain the timing and sequence of glacial alloformations in the southern portion of the range. Moraines, diamicts and bedrock exposures here have previously been correlated with as many as five Pleistocene and four Holocene glacial events. Exposure ages from Pleistocene alloformations associated with trunk glaciers in Sinks Canyon and North Fork Canyon generally confirm earlier age estimates. Cosmogenic radionuclide (CRN, 10Be and 26Al) ages from moraines and striated bedrock surfaces previously mapped as Pinedale correspond to MIS2, while boulder exposure ages from moraines mapped as Bull Lake correspond generally to MIS5-MIS6. Geomorphic data from a moraine previously mapped as Younger pre-Sacagawea Ridge appears to correspond most closely to the Sacagawea Ridge glacial episode (MIS-16), but the uncertainty of a single 10Be exposure age suggests the unit could be as young as MIS-10 or as old as MIS-18. Boulders from a diamict on Table Mountain previously reported as Older pre-Sacagawea Ridge yield two 10Be exposure ages that suggest the presence of Early Pleistocene glacial activity here possibly older than 1–2 Ma (>MIS-30). Bedrock exposure ages within Sinks Canyon suggest the Pinedale valley glacier had retreated from the floor of Sinks Canyon to above PopoAgie Falls by ca. 15.3 ka. Cirque glaciers in Stough Basin appear to have retreated behind their riegels by ca. 16 ka, which suggests the cirque glaciers were decoupling across their riegels from the valley glaciers below at this time, prior to their readvance to form Lateglacial moraines. New 10Be boulder exposure ages from moraines previously correlated to the Temple Lake and Alice Lake allostratigraphic units in the cirques of Stough Basin and Cirque of the Towers show general equivalence to the stadial event just prior to the onset of the Bølling interstadial (17.5–14.7 ka) and to the Intra-Allerød Cold Period-Younger Dryas stadial phase (13.9–11.7 ka), respectively. From this evidence, the Temple Lake Alloformation of the Wind River Mountains now should correspond to the INTIMATE GS-2.1a (Oldest Dryas) stadial event while the Alice Lake Alloformation should correspond to the INTIMATE GS-2 stadial (IACP-Younger Dryas). Thus, we consider that evidence no longer exists for early-to mid-Holocene glacial events in the southern Wind River Range

    Revised Quaternary glacial succession and post-LGM recession, southern Wind River Range, Wyoming, USA

    Get PDF
    We present here a more complete cosmogenic chronology of Pleistocene glacial deposits for the Wind River Range, Wyoming, USA. Fifty-one new and thirty-nine re-calculated 10Be and 26Al exposure ages from Sinks and North Fork canyons, Stough Basin, Cirque of the Towers and the Temple Lake valley allow us to more tightly constrain the timing and sequence of glacial alloformations in the southern portion of the range. Moraines, diamicts and bedrock exposures here have previously been correlated with as many as five Pleistocene and four Holocene glacial events. Exposure ages from Pleistocene alloformations associated with trunk glaciers in Sinks Canyon and North Fork Canyon generally confirm earlier age estimates. Cosmogenic radionuclide (CRN, 10Be and 26Al) ages from moraines and striated bedrock surfaces previously mapped as Pinedale correspond to MIS2, while boulder exposure ages from moraines mapped as Bull Lake correspond generally to MIS5-MIS6. Geomorphic data from a moraine previously mapped as Younger pre-Sacagawea Ridge appears to correspond most closely to the Sacagawea Ridge glacial episode (MIS-16), but the uncertainty of a single 10Be exposure age suggests the unit could be as young as MIS-10 or as old as MIS-18. Boulders from a diamict on Table Mountain previously reported as Older pre-Sacagawea Ridge yield two 10Be exposure ages that suggest the presence of Early Pleistocene glacial activity here possibly older than 1–2 Ma (>MIS-30). Bedrock exposure ages within Sinks Canyon suggest the Pinedale valley glacier had retreated from the floor of Sinks Canyon to above PopoAgie Falls by ca. 15.3 ka. Cirque glaciers in Stough Basin appear to have retreated behind their riegels by ca. 16 ka, which suggests the cirque glaciers were decoupling across their riegels from the valley glaciers below at this time, prior to their readvance to form Lateglacial moraines. New 10Be boulder exposure ages from moraines previously correlated to the Temple Lake and Alice Lake allostratigraphic units in the cirques of Stough Basin and Cirque of the Towers show general equivalence to the stadial event just prior to the onset of the Bølling interstadial (17.5–14.7 ka) and to the Intra-Allerød Cold Period-Younger Dryas stadial phase (13.9–11.7 ka), respectively. From this evidence, the Temple Lake Alloformation of the Wind River Mountains now should correspond to the INTIMATE GS-2.1a (Oldest Dryas) stadial event while the Alice Lake Alloformation should correspond to the INTIMATE GS-2 stadial (IACP-Younger Dryas). Thus, we consider that evidence no longer exists for early-to mid-Holocene glacial events in the southern Wind River Range
    • …
    corecore