8 research outputs found

    LOGISTICS IN CONTESTED ENVIRONMENTS

    Get PDF
    This report examines the transport and delivery of logistics in contested environments within the context of great-power competition (GPC). Across the Department of Defense (DOD), it is believed that GPC will strain our current supply lines beyond their capacity to maintain required warfighting capability. Current DOD efforts are underway to determine an appropriate range of platforms, platform quantities, and delivery tactics to meet the projected logistics demand in future conflicts. This report explores the effectiveness of various platforms and delivery methods through analysis in developed survivability, circulation, and network optimization models. Among other factors, platforms are discriminated by their radar cross-section (RCS), noise level, speed, cargo capacity, and self-defense capability. To maximize supply delivered and minimize the cost of losses, the results of this analysis indicate preference for utilization of well-defended convoys on supply routes where bulk supply is appropriate and smaller, and widely dispersed assets on shorter, more contested routes with less demand. Sensitivity analysis on these results indicates system survivability can be improved by applying RCS and noise-reduction measures to logistics assets.Director, Warfare Integration (OPNAV N9I)Major, Israel Defence ForcesCivilian, Singapore Technologies Engineering Ltd, SingaporeCommander, Republic of Singapore NavyCommander, United States NavyCaptain, Singapore ArmyLieutenant, United States NavyLieutenant, United States NavyMajor, Republic of Singapore Air ForceCaptain, United States Marine CorpsLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyCaptain, Singapore ArmyLieutenant Junior Grade, United States NavyCaptain, Singapore ArmyLieutenant Colonel, Republic of Singapore Air ForceApproved for public release. distribution is unlimite

    RNAi Effector Diversity in Nematodes

    Get PDF
    While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i) Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (ds)RNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii) The Argonautes (AGOs) responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii) Secondary Argonautes (SAGOs) are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv) All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v) In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research genetic tool in nematodes

    THE EFFECTS OF WAVE-INDUCED LOADS ON ROV PERFORMANCE WHILE OPERATING AT NEAR-SURFACE DEPTHS

    Get PDF
    The objective of this research was to quantify the undesired pitch and heave motions caused by wave-induced loads on a remotely operated vehicle (ROV) operating near the surface. Accomplishing this objective will help to inform system design requirements necessary to ensure desired performance during operations. An experimental study was conducted utilizing a towing tank with wave-making capability and a commercially available ROV. The ROV was tested in the tank at near-surface depths using both single-component and two-component waves for zero speed and forward speed conditions. Pitch, depth, and thruster data were collected from the ROV and compared against control runs to determine the effect of the wave-induced loads on the ability of the ROV to control pitch and maintain depth. For pitch, the results showed that the response had components from linear loads, nonlinear loads, and natural system frequencies. Linear loads resulted in a pitch response that increased with wavelength and ROV speed. Low-frequency nonlinear loads resulted in a measurable pitch response at the wave component frequency differences used. Natural system frequencies resulted in a pitch response at frequencies specific to the ROV, and this response increased with speed. For depth, little response was seen due to the control authority of the ROV; however, the vertical thruster response showed that wave-induced loads have the potential to affect depth if sufficient control authority is not present.Outstanding ThesisLieutenant, United States NavyApproved for public release. distribution is unlimite

    Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk

    No full text
    We performed a meta-analysis of five genome-wide association studies to identify common variants influencing colorectal cancer (CRC) risk comprising 8,682 cases and 9,649 controls. Replication analysis was performed in case-control sets totaling 21,096 cases and 19,555 controls. We identified three new CRC risk loci at 6p21 (rs1321311, near CDKN1A; P = 1.14 × 10 -10), 11q13.4 (rs3824999, intronic to POLD3; P = 3.65 × 10 -10) and Xp22.2 (rs5934683, near SHROOM2; P = 7.30 × 10 -10) This brings the number of independent loci associated with CRC risk to 20 and provides further insight into the genetic architecture of inherited susceptibility to CRC.</p
    corecore