192 research outputs found

    Prevalence of antibiotic-resistant E. coli in retail chicken: Comparing conventional, organic, kosher, and raised without antibiotics

    Get PDF
    Retail poultry products are known sources of antibiotic-resistant Escherichia coli, a major human health concern. Consumers have a range of choices for poultry, including conventional, organic, kosher, and raised without antibiotics (RWA) – designations that are perceived to indicate differences in quality and safety. However, whether these categories vary in the frequency of contamination with antibiotic-resistant E. coli is unknown. We examined the occurrence of antibiotic-resistant E. coli on raw chicken marketed as conventional, organic, kosher and RWA. From April – June 2012, we purchased 213 samples of raw chicken from 15 locations in the New York City metropolitan area. We screened E. coli isolates from each sample for resistance to 12 common antibiotics. Although the organic and RWA labels restrict the use of antibiotics, the frequency of antibiotic-resistant E. coli tended to be only slightly lower for RWA, and organic chicken was statistically indistinguishable from conventional products that have no restrictions. Kosher chicken had the highest frequency of antibiotic-resistant E. coli, nearly twice that of conventional products, a result that belies the historical roots of kosher as a means to ensure food safety. These results indicate that production methods influence the frequency of antibiotic-resistant E. coli on poultry products available to consumers. Future research to identify the specific practices that cause the high frequency of antibiotic-resistant E. coli in kosher chicken could promote efforts to reduce consumer exposure to this potential pathogen

    Prevalence of antibiotic-resistant E. coli in retail chicken: Comparing conventional, organic, kosher, and raised without antibiotics

    Get PDF
    Retail poultry products are known sources of antibiotic-resistant Escherichia coli, a major human health concern. Consumers have a range of choices for poultry, including conventional, organic, kosher, and raised without antibiotics (RWA) – designations that are perceived to indicate differences in quality and safety. However, whether these categories vary in the frequency of contamination with antibiotic-resistant E. coli is unknown. We examined the occurrence of antibiotic-resistant E. coli on raw chicken marketed as conventional, organic, kosher and RWA. From April – June 2012, we purchased 213 samples of raw chicken from 15 locations in the New York City metropolitan area. We screened E. coli isolates from each sample for resistance to 12 common antibiotics. Although the organic and RWA labels restrict the use of antibiotics, the frequency of antibiotic-resistant E. coli tended to be only slightly lower for RWA, and organic chicken was statistically indistinguishable from conventional products that have no restrictions. Kosher chicken had the highest frequency of antibiotic-resistant E. coli, nearly twice that of conventional products, a result that belies the historical roots of kosher as a means to ensure food safety. These results indicate that production methods influence the frequency of antibiotic-resistant E. coli on poultry products available to consumers. Future research to identify the specific practices that cause the high frequency of antibiotic-resistant E. coli in kosher chicken could promote efforts to reduce consumer exposure to this potential pathogen

    Assessment of damage detection in composite structures using 3D vibrometry

    Get PDF
    Carbon fibre reinforced polymers (CFRP) have been used significantly more in recent years due to their increased specific strength over aluminium structures. One major area in which their use has grown is the aerospace industry where many now use CFRP in their construction. One major problem with CFRP’s is their low resistance to impacts. Structural health monitoring (SHM) aims to continually monitor a structure throughout its entire life and can allow aircraft owners to identify impact damage as it occurs. This means that it can be repaired prior to growth, saving weight with the repair and the time that aircraft is grounded. Two areas of SHM being researched are Acoustic Emission (AE) monitoring and AcoustoUltrasonics (AU) both based on an understanding of the propagation of ultrasonic waves. 3D Scanning laser vibrometry was used to monitor the propagation of AU waves with the aim of gaining a better understanding their interaction with delamination in carbon fibre reinforced polymers. Three frequencies were exited with a PZT transducer and the received signal analysed by a cross correlation method. The results from this and the vibrometer scans revealed 100 kHz as the most effective propagating frequency of the three. A high resolution scan was then conducted at this frequency where it could be seen that only the out of plane component of the wave interacted with the damage, in particular the A0 mode. A 3D Fast Fourier Transform was then plotted, which identified the most effective frequency as 160 kHz

    Aluminum-, Calcium- And Titanium-Rich Oxide Stardust In Ordinary Chondrite Meteorites

    Full text link
    We report isotopic data for a total of 96 presolar oxide grains found in residues of several unequilibrated ordinary chondrite meteorites. Identified grain types include Al2O3, MgAl2O4, hibonite (CaAl12O19) and Ti oxide. This work greatly increases the presolar hibonite database, and is the first report of presolar Ti oxide. O-isotopic compositions of the grains span previously observed ranges and indicate an origin in red giant and asymptotic giant branch (AGB) stars of low mass (<2.5 MSun) for most grains. Cool bottom processing in the parent AGB stars is required to explain isotopic compositions of many grains. Potassium-41 enrichments in hibonite grains are attributable to in situ decay of now-extinct 41Ca. Inferred initial 41Ca/40Ca ratios are in good agreement with model predictions for low-mass AGB star envelopes, provided that ionization suppresses 41Ca decay. Stable Mg and Ca isotopic ratios of most of the hibonite grains reflect primarily the initial compositions of the parent stars and are generally consistent with expectations for Galactic chemical evolution, but require some local interstellar chemical inhomogeneity. Very high 17O/16O or 25Mg/24Mg ratios suggest an origin for some grains in binary star systems where mass transfer from an evolved companion has altered the parent star compositions. A supernova origin for the hitherto enigmatic 18O-rich Group 4 grains is strongly supported by multi-element isotopic data for two grains. The Group 4 data are consistent with an origin in a single supernova in which variable amounts of material from the deep 16O-rich interior mixed with a unique end-member mixture of the outer layers. The Ti oxide grains primarily formed in low-mass AGB stars. They are smaller and rarer than presolar Al2O3, reflecting the lower abundance of Ti than Al in AGB envelopes.Comment: Accepted for publication in ApJ; 47 pages, 13 figure

    Virtual delta-t mapping technique using a local interaction simulation approach for location of Acoustic Emission damage events for aerospace applications

    Get PDF
    Acoustic Emission (AE) is a promising technique for Structural Health Monitoring applications (SHM) and involves detecting the ultrasonic stress waves generated by damage initiation growth in a structure. One advantage of AE for SHM is the ability to locate AE sources. Delta-t mapping was developed to overcome the limitations of the conventional AE location technique. The disadvantage of the delta-t mapping is that it requires the manual collection of experimental training data. This paper explores the possibility of using local interaction simulation approach (LISA) to generate simulated training data for the algorithm. The results for locating a fatigue crack are presented for both the experimental and simulated training data and showed average errors in source location of 3mm and 8mm respectively. This demonstrates the potential of using simulated training data for the mapping technique which would ultimately reduce implementation of delta-t mapping on large scale structures

    Coordinated Analyses of Presolar Grains in the Allan Hills 77307 and Queen Elizabeth Range 99177 Meteorites

    Full text link
    We report the identification of presolar silicates (~177 ppm), presolar oxides (~11 ppm), and one presolar SiO2 grain in the Allan Hills (ALHA) 77307 chondrite. Three grains having Si isotopic compositions similar to SiC X and Z grains were also identified, though the mineral phases are unconfirmed. Similar abundances of presolar silicates (~152 ppm) and oxides (~8 ppm) were also uncovered in the primitive CR chondrite Queen Elizabeth Range (QUE) 99177, along with 13 presolar SiC grains and one presolar silicon nitride. The O isotopic compositions of the presolar silicates and oxides indicate that most of the grains condensed in low-mass red giant and asymptotic giant branch stars. Interestingly, unlike presolar oxides, few presolar silicate grains have isotopic compositions pointing to low-metallicity, low-mass stars (Group 3). The 18O-rich (Group 4) silicates, along with the few Group 3 silicates that were identified, likely have origins in supernova outflows. This is supported by their O and Si isotopic compositions. Elemental compositions for 74 presolar silicate grains were determined by scanning Auger spectroscopy. Most of the grains have non-stoichiometric elemental compositions inconsistent with pyroxene or olivine, the phases commonly used to fit astronomical spectra, and have comparable Mg and Fe contents. Non-equilibrium condensation and/or secondary alteration could produce the high Fe contents. Transmission electron microscopic analysis of three silicate grains also reveals non-stoichiometric compositions, attributable to non-equilibrium or multistep condensation, and very fine scale elemental heterogeneity, possibly due to subsequent annealing. The mineralogies of presolar silicates identified in meteorites thus far seem to differ from those in interplanetary dust particles.Comment: 23 pages, 16 figure

    Mitral Cells of the Olfactory Bulb Perform Metabolic Sensing and Are Disrupted by Obesity at the Level of the Kv1.3 Ion Channel

    Get PDF
    Sixty-five percent of Americans are over-weight. While the neuroendocrine controls of energy homeostasis are well known, how sensory systems respond to and are impacted by obesity is scantily understood. The main accepted function of the olfactory system is to provide an internal depiction of our external chemical environment, starting from the detection of chemosensory cues. We hypothesized that the system additionally functions to encode internal chemistry via the detection of chemicals that are important indicators of metabolic state. We here uncovered that the olfactory bulb (OB) subserves as an internal sensor of metabolism via insulin-induced modulation of the potassium channel Kv1.3. Using an adult slice preparation of the olfactory bulb, we found that evoked neural activity in Kv1.3-expressing mitral cells is enhanced following acute insulin application. Insulin mediated changes in mitral cell excitability are predominantly due to the modulation of Kv1.3 channels as evidenced by the lack of effect in slices from Kv1.3-null mice. Moreover, a selective Kv1.3 peptide blocker (ShK186) inhibits more than 80% of the outward current in parallel voltage-clamp studies, whereby insulin significantly decreases the peak current magnitude without altering the kinetics of inactivation or deactivation. Mice that were chronically administered insulin using intranasal delivery approaches exhibited either an elevation in basal firing frequency or fired a single cluster of action potentials. Following chronic administration of the hormone, mitral cells were inhibited by application of acute insulin rather than excited. Mice made obese through a diet of ∼32% fat exhibited prominent changes in mitral cell action potential shape and clustering behavior, whereby the subsequent response to acute insulin stimulation was either attenuated or completely absent. Our results implicate an inappropriate neural function of olfactory sensors following exposure to chronic levels of the hormone insulin (diabetes) or increased body weight (obesity)

    Arachidonic acid inhibition of L-type calcium (CaV1.3b) channels varies with accessory CaVβ subunits

    Get PDF
    Arachidonic acid (AA) inhibits the activity of several different voltage-gated Ca2+ channels by an unknown mechanism at an unknown site. The Ca2+ channel pore-forming subunit (CaVα1) is a candidate for the site of AA inhibition because T-type Ca2+ channels, which do not require accessory subunits for expression, are inhibited by AA. Here, we report the unanticipated role of accessory CaVβ subunits on the inhibition of CaV1.3b L-type (L-) current by AA. Whole cell Ba2+ currents were measured from recombinant channels expressed in human embryonic kidney 293 cells at a test potential of −10 mV from a holding potential of −90 mV. A one-minute exposure to 10 µM AA inhibited currents with β1b, β3, or β4 58, 51, or 44%, respectively, but with β2a only 31%. At a more depolarized holding potential of −60 mV, currents were inhibited to a lesser degree. These data are best explained by a simple model where AA stabilizes CaV1.3b in a deep closed-channel conformation, resulting in current inhibition. Consistent with this hypothesis, inhibition by AA occurred in the absence of test pulses, indicating that channels do not need to open to become inhibited. AA had no effect on the voltage dependence of holding potential–dependent inactivation or on recovery from inactivation regardless of CaVβ subunit. Unexpectedly, kinetic analysis revealed evidence for two populations of L-channels that exhibit willing and reluctant gating previously described for CaV2 channels. AA preferentially inhibited reluctant gating channels, revealing the accelerated kinetics of willing channels. Additionally, we discovered that the palmitoyl groups of β2a interfere with inhibition by AA. Our novel findings that the CaVβ subunit alters kinetic changes and magnitude of inhibition by AA suggest that CaVβ expression may regulate how AA modulates Ca2+-dependent processes that rely on L-channels, such as gene expression, enzyme activation, secretion, and membrane excitability
    corecore