12 research outputs found

    Vitamin D-binding protein (rs4588) T/T genotype is associated with anteroseptal myocardial infarction in coronary artery disease patients

    Get PDF
    Background: Cardiovascular diseases (CVD) are among leading causes of death worldwide and amongst CVD, coronary artery disease (CAD) accounts for almost half of all cardiovascular deaths as the most common cause of death in the developed world. Vitamin D and the vitamin D-binding protein (VDBP) have been studied as possible CAD pathogenesis factors but literature data provide opposing evidence on their role in CAD. Herein we aimed to present novel evidence on the association of two VDBP polymorphisms (rs4588) and (rs7041) with CAD in patients after acute myocardial infarction and study possible correlations of these polymorphisms with 25-hydroxyvitamin D [25(OH)D] serum levels. Methods: The cross-section genotyping study included 155 subjects with CAD upon acute myocardial infarct and 104 control subjects. All patients and control group were Caucasians of European descent. VDBP polymorphisms (rs4588) and (rs7041) were studied by use of RT-PCR. Liquid chromatography, tandem mass spectrometry (LC-MS/MS) method was used for measurement of vitamin D in the serum. Results: Association of the VDBP (rs4588) T/T genotype with CAD patients after acute MI and correlation of VDBP (rs4588) genotype G/G with higher levels of total vitamin D were found. No correlation of 25(OH)D serum levels with CAD were established but the multivariate logistic regression modelling enabled association of total vitamin D level and VDBP (rs4588) T/T genotype with CAD and anteroseptal myocardial infarction (ASMI) CAD occurrence. Conclusions: Obtained data speak in favor to the VDBP (rs4588) T/T genotype as a susceptibility factor for anteroseptal myocardial infarction where the same genotype showed to be generally more prevalent in smoker

    Circadian (De)regulation in Head and Neck Squamous Cell Carcinoma

    No full text
    Head and neck cancer encompass different malignancies that develop in and around the throat, larynx, nose, sinuses and mouth. Most head and neck cancers are squamous cell carcinomas (HNSCC) that arise in the flat squamous cells that makeup the thin layer of tissue on the surface of anatomical structures in the head and neck. Each year, HNSCC is diagnosed in more than 600,000 people worldwide, with about 50,000 new cases. HNSCC is considered extremely curable if detected early. But the problem remains in treatment of inoperable cases, residues or late stages. Circadian rhythm regulation has a big role in developing various carcinomas, and head and neck tumors are no exception. A number of studies have reported that alteration in clock gene expression is associated with several cancers, including HNSCC. Analyses on circadian clock genes and their association with HNSCC have shown that expression of PER1, PER2, PER3, CRY1, CRY2, CKIε, TIM, and BMAL1 are deregulated in HNSCC tissues. This review paper comprehensively presents data on deregulation of circadian genes in HNSCC and critically evaluates their potential diagnostics and prognostics role in this type of pathology

    Small Molecules Targeting Biological Clock; A Novel Prospective for Anti-Cancer Drugs

    No full text
    The circadian rhythms are an intrinsic timekeeping system that regulates numerous physiological, biochemical, and behavioral processes at intervals of approximately 24 h. By regulating such processes, the circadian rhythm allows organisms to anticipate and adapt to continuously changing environmental conditions. A growing body of evidence shows that disruptions to the circadian rhythm can lead to various disorders, including cancer. Recently, crucial knowledge has arisen regarding the essential features that underlie the overt circadian rhythm and its influence on physiological outputs. This knowledge suggests that specific small molecules can be utilized to control the circadian rhythm. It has been discovered that these small molecules can regulate circadian-clock-related disorders such as metabolic, cardiovascular, inflammatory, as well as cancer. This review examines the potential use of small molecules for developing new drugs, with emphasis placed on recent progress that has been made regarding the identification of small-molecule clock modulators and their potential use in treating cancer

    Study of vitamin D receptor gene polymorphisms in a cohort of myocardial infarction patients with coronary artery disease

    No full text
    Background: Vitamin D deficiency is associated with cardiovascular diseases, including coronary artery diseases (CAD). As vitamin D manifests its biological function through its vitamin D receptor (VDR), VDR gene polymorphisms potentially affect VDR functionality and vitamin D activity. Therefore, the objective of this study was to analyze three well-studied VDR gene polymorphisms- Fok1 (rs2228570), BsmI (rs1544410) and Taq1 (rs731236)-in a cohort of CAD patients after acute myocardial infarction. Methods: In the presented cross-sectional study, 155 participants with CAD after acute myocardial infarction and 104 participants in a control group without CAD were enrolled. The participants in both groups were Caucasians of European origin. The genotyping of VDR polymorphisms rs2228570, rs1544410 and rs731236 was assessed by RT-PCR. Results: The results show an association between the T/T genotype of the BsmI (rs1544410) and the G/G genotype of the Taq1 (rs731236) VDR polymorphism and CAD patients after acute myocardial infarction. There was no association between the Fok1 (rs2228570) VDR polymorphism and CAD patients after acute myocardial infarction. Conclusion: The presented results suggest a potential association of the BsmI (rs1544410) and Taq1 (rs731236) VDR polymorphisms with CAD patients after myocardial infarction

    Supragingival dental biofilm profile and biofilm control during orthodontic treatment with fixed orthodontic appliance: A randomized controlled trial

    No full text
    Objective: The effectiveness of supragingival dental biofilm control during orthodontic treatment and changes in the bacterial profile were analyzed. Design: Sixty-four participants aged 12–22 years (57% female) were included in the study. Participants underwent orthodontic treatment with fixed appliances and were randomly assigned to one of the three groups, which during a period of one month: (I) used chlorhexidine digluconate (CHX), (II) used high concentration of fluoride (F) gel and (III) performed standard oral hygiene. The plaque and gingivitis index, pH of biofilm and white spot lesions (WSL) were assessed. Changes of the bacteria in the biofilm were analyzed by the quantitative polymerase chain reaction Results: Increase in the plaque index, pH of biofilm, and WSL was observed during orthodontic treatment with standard oral hygiene. Large interindividual variability was present, and the effects of one-month use of fluorides and CHX on clinical parameters were not significant. Despite standard hygiene the abundance of studied biofilm bacteria increased - the most Streptoccocus mutans (14.2x) and S. salivarius (3.3x), moderate Veillonella parvula (3x) and the least S. sobrinus (2.3x) and Agregatibacter actinomycetemcomitans (1.9x). The use of CHX reduced S. sobrinus (2.2x) and A. actinomycetemcomitans (1.9x). Fluoride use reduced A. actinomycetemcomitans (1.3x) and S. sobrinus (1.2x). Fluorides better controlled S. mutans than CHX. Conclusion: Bacterial biomass in supragingival biofilm increased during treatment with metal orthodontic appliances, with greater increase in cariogenic bacteria than periopathogens. Fluoride controlled S. mutans, while CHX S. sobrinus and A. actinomycetemcomitans

    Application of artificial intelligence-based regression methods in the problem of covid-19 spread prediction: A systematic review

    No full text
    COVID-19 is one of the greatest challenges humanity has faced recently, forcing a change in the daily lives of billions of people worldwide. Therefore, many efforts have been made by researchers across the globe in the attempt of determining the models of COVID-19 spread. The objectives of this review are to analyze some of the open-access datasets mostly used in research in the field of COVID-19 regression modeling as well as present current literature based on Artificial Intelligence (AI) methods for regression tasks, like disease spread. Moreover, we discuss the applicability of Machine Learning (ML) and Evolutionary Computing (EC) methods that have focused on regressing epidemiology curves of COVID-19, and provide an overview of the usefulness of existing models in specific areas. An electronic literature search of the various databases was conducted to develop a comprehensive review of the latest AI-based approaches for modeling the spread of COVID-19. Finally, a conclusion is drawn from the observation of reviewed papers that AI-based algorithms have a clear application in COVID-19 epidemiological spread modeling and may be a crucial tool in the combat against coming pandemics

    Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review

    No full text
    COVID-19 is one of the greatest challenges humanity has faced recently, forcing a change in the daily lives of billions of people worldwide. Therefore, many efforts have been made by researchers across the globe in the attempt of determining the models of COVID-19 spread. The objectives of this review are to analyze some of the open-access datasets mostly used in research in the field of COVID-19 regression modeling as well as present current literature based on Artificial Intelligence (AI) methods for regression tasks, like disease spread. Moreover, we discuss the applicability of Machine Learning (ML) and Evolutionary Computing (EC) methods that have focused on regressing epidemiology curves of COVID-19, and provide an overview of the usefulness of existing models in specific areas. An electronic literature search of the various databases was conducted to develop a comprehensive review of the latest AI-based approaches for modeling the spread of COVID-19. Finally, a conclusion is drawn from the observation of reviewed papers that AI-based algorithms have a clear application in COVID-19 epidemiological spread modeling and may be a crucial tool in the combat against coming pandemics

    A polymorphic GGC repeat in the NPAS2 gene and its association with melanoma

    No full text
    Circadian clock regulation in mammals is controlled by feedback loops of a set of circadian genes. One of these circadian genes, NPAS2, encodes for a member of the bHLH-PAS class of transcription factors and is expressed in the forebrain and in some peripheral organs such as liver and skin. Other biological processes are also regulated by circadian genes. For example, NPAS2 is involved in cell proliferation, DNA damage repair and malignant transformation. Aberrant expression of clock genes has been previously observed in melanoma which led to our effort to sequence the NPAS2 promoter region in this cancer type. The NPAS2 putative promoter and 5′ untranslated region of ninety-three melanoma patients and ninety-six control subjects were sequenced and several variants were identified. Among these is a novel microsatellite comprising a GGC repeat with different alleles ranging from 7 to 13 repeats located in the 5′ untranslated exon. Homozygosity of an allele with nine repeats (9/9) was more prevalent in melanoma than in control subjects (22.6% and 13.5%, respectively, P: 0.0206) suggesting that some NPAS2 variants might contribute to melanoma susceptibility

    A polymorphic GGC repeat in the NPAS2 gene and its association with melanoma

    No full text
    Circadian clock regulation in mammals is controlled by feedback loops of a set of circadian genes. One of these circadian genes, NPAS2, encodes for a member of the bHLH-PAS class of transcription factors and is expressed in the forebrain and in some peripheral organs such as liver and skin. Other biological processes are also regulated by circadian genes. For example, NPAS2 is involved in cell proliferation, DNA damage repair and malignant transformation. Aberrant expression of clock genes has been previously observed in melanoma which led to our effort to sequence the NPAS2 promoter region in this cancer type. The NPAS2 putative promoter and 5′ untranslated region of ninety-three melanoma patients and ninety-six control subjects were sequenced and several variants were identified. Among these is a novel microsatellite comprising a GGC repeat with different alleles ranging from 7 to 13 repeats located in the 5′ untranslated exon. Homozygosity of an allele with nine repeats (9/9) was more prevalent in melanoma than in control subjects (22.6% and 13.5%, respectively, P: 0.0206) suggesting that some NPAS2 variants might contribute to melanoma susceptibility
    corecore