29 research outputs found

    Bone loss and aggravated autoimmune arthritis in HLA-DRβ1-bearing humanized mice following oral challenge with Porphyromonas gingivalis

    Get PDF
    BACKGROUND: The linkage between periodontal disease and rheumatoid arthritis is well established. Commonalities among the two are that both are chronic inflammatory diseases characterized by bone loss, an association with the shared epitope susceptibility allele, and anti-citrullinated protein antibodies. METHODS: To explore immune mechanisms that may connect the two seemingly disparate disorders, we measured host immune responses including T-cell phenotype and anti-citrullinated protein antibody production in human leukocyte antigen (HLA)-DR1 humanized C57BL/6 mice following exposure to the Gram-negative anaerobic periodontal disease pathogen Porphyromonas gingivalis. We measured autoimmune arthritis disease expression in mice exposed to P. gingivalis, and also in arthritis-resistant mice by flow cytometry and multiplex cytokine-linked and enzyme-linked immunosorbent assays. We also measured femoral bone density by microcomputed tomography and systemic cytokine production. RESULTS: Exposure of the gingiva of DR1 mice to P. gingivalis results in a transient increase in the percentage of Th17 cells, both in peripheral blood and cervical lymph nodes, a burst of systemic cytokine activity, a loss in femoral bone density, and the generation of anti-citrullinated protein antibodies. Importantly, these antibodies are not produced in response to P. gingivalis treatment of wild-type C57BL/6 mice, and P. gingivalis exposure triggered expression of arthritis in arthritis-resistant mice. CONCLUSIONS: Exposure of gingival tissues to P. gingivalis has systemic effects that can result in disease pathology in tissues that are spatially removed from the initial site of infection, providing evidence for systemic effects of this periodontal pathogen. The elicitation of anti-citrullinated protein antibodies in an HLA-DR1-restricted fashion by mice exposed to P. gingivalis provides support for the role of the shared epitope in both periodontal disease and rheumatoid arthritis. The ability of P. gingivalis to induce disease expression in arthritis-resistant mice provides support for the idea that periodontal infection may be able to trigger autoimmunity if other disease-eliciting factors are already present

    DNA-dependent Protein Kinase Activity Is Not Required for Immunoglobulin Class Switching

    Get PDF
    Class switch recombination (CSR), similar to V(D)J recombination, is thought to involve DNA double strand breaks and repair by the nonhomologous end–joining pathway. A key component of this pathway is DNA-dependent protein kinase (DNA-PK), consisting of a catalytic subunit (DNA-PKcs) and a DNA-binding heterodimer (Ku70/80). To test whether DNA-PKcs activity is essential for CSR, we examined whether IgM+ B cells from scid mice with site-directed H and L chain transgenes were able to undergo CSR. Although B cells from these mice were shown to lack DNA-PKcs activity, they were able to switch from IgM to IgG or IgA with close to the same efficiency as B cells from control transgenic and nontransgenic scid/+ mice, heterozygous for the scid mutation. We conclude that CSR, unlike V(D)J recombination, can readily occur in the absence of DNA-PKcs activity. We suggest nonhomologous end joining may not be the (primary or only) mechanism used to repair DNA breaks during CSR

    Patients with COVID-19: in the dark-NETs of neutrophils.

    Get PDF
    SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19

    Human neutrophil FcγRIIIb regulates neutrophil extracellular trap release in response to electrospun polydioxanone biomaterials

    No full text
    During the acute inflammatory response, the release of neutrophil extracellular traps (NETs) is a pro-inflammatory, preconditioning event on a biomaterial surface. Therefore, regulation of NET release through biomaterial design is one strategy to enhance biomaterial-guided in situ tissue regeneration. In this study, IgG adsorption on electrospun polydioxanone biomaterials with differing fiber sizes was explored as a regulator of in vitro human neutrophil NET release. The propensity to release NETs was increased and decreased by modulating adsorbed IgG, suggesting a functional link between IgG and NET formation. Fiber-size dependent NET release was reduced by blocking FcγRIIIb, but not FcγRI, FcγRIIa, or Mac-1 (CD11b/CD18), indicating a specific receptor mediated neutrophil response. Inhibition of transforming growth factor-β-activated kinase 1 (TAK1), which is activated downstream of FcγRIIIb, significantly reduced the release of NETs in a fiber size-independent manner. These results indicate that in vitro electrospun biomaterial-induced NET release is largely regulated by IgG adsorption, engagement of FcγRIIIb, and signaling through TAK1. Modulation of this pathway may have beneficial therapeutic effects for regulating neutrophil-mediated inflammation by avoiding the adverse effects of NETs and increasing the potential for in situ tissue regeneration. Statement of significance: Electrospun biomaterials have great potential for in situ tissue engineering because of their versatility and biomimetic properties. However, understanding how to design the biomaterial to regulate acute inflammation, dominated by neutrophils, remains a great challenge for successful tissue integration and regeneration. In this work, we demonstrate for the first time how protein adsorption on the biomaterial surface and engagement of a specific neutrophil receptor induces intracellular signals that regulate the pro-inflammatory release of neutrophil extracellular traps (NETs). Given the deleterious effects of NETs during the acute inflammatory response to a biomaterial, our work highlights the importance of considering biomaterial-neutrophil interactions on degradable and non-degradable biomaterials to achieve the desired biological outcome

    Neutrophils in Biomaterial-Guided Tissue Regeneration: Matrix Reprogramming for Angiogenesis

    No full text
    Biomaterial-guided in situ tissue regeneration uses biomaterials to stimulate and guide the body\u27s endogenous, regenerative processes to drive functional tissue repair and regeneration. To be successful, cell migration into the biomaterials is essential, which requires angiogenesis to maintain cell viability. Neutrophils, the first cells responding to an implanted biomaterial, are now known to play an integral part in angiogenesis in multiple tissues and exhibit considerable potential for driving angiogenesis in the context of tissue regeneration. In terms of biomaterial-guided in situ tissue regeneration, harnessing the proangiogenic potential of the neutrophil through its robust secretion of matrix metalloproteinase 9 (MMP-9) may provide a mechanism to improve biomaterial performance by initiating matrix reprogramming. This review will discuss neutrophils as matrix reprogrammers and what is currently known about their ability to create a microenvironment that is more conducive for angiogenesis and tissue regeneration through the secretion of MMP-9. It will first review a set of ground-breaking studies in tumor biology and then present an overview of what is currently known about neutrophils and MMP-9 in biomaterial vascularization. Finally, it will conclude with potential strategies and considerations to engage neutrophils in biomaterial-guided angiogenesis and in situ tissue regeneration. This review draws attention to a highly neglected topic in tissue engineering, the role of neutrophils in biomaterial-guided tissue regeneration and angiogenesis. Moreover, it highlights their abundant secretion of matrix metalloproteinase 9 (MMP-9) for matrix reprogramming, a topic with great potential yet to be vetted in the literature. It presents strategies and considerations for designing the next generation of immunomodulatory biomaterials. While there is literature discussing the overall role of neutrophils in angiogenesis, there are a limited number of review articles focused on this highly relevant topic in the context of biomaterial integration and tissue regeneration, making this a necessary and impactful article

    Blebs and Apoptotic Bodies Are B Cell Autoantigens

    No full text

    An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration

    No full text
    Despite considerable recent progress in defining neutrophil functions and behaviors in tissue repair, much remains to be determined with regards to its overall role in the tissue integration of biomaterials. This article provides an overview of the neutrophil\u27s numerous, important roles in both inflammation and resolution, and subsequently, their role in biomaterial integration. Neutrophils function in three primary capacities: generation of oxidative bursts, release of granules and formation of neutrophil extracellular traps (NETs); these combined functions enable neutrophil involvement in inflammation, macrophage recruitment, M2 macrophage differentiation, resolution of inflammation, angiogenesis, tumor formation and immune system activation. Neutrophils exhibit great flexibility to adjust to the prevalent microenvironmental conditions in the tissue; thus, the biomaterial composition and fabrication will potentially influence neutrophil behavior following confrontation. This review serves to highlight the neutrophil\u27s plasticity, reiterating that neutrophils are not just simple suicidal killers, but the true maestros of resolution and regeneration

    Electrospun Template Architecture and Composition Regulate Neutrophil NETosis in Vitro and in Vivo

    No full text
    Mounting evidence indicates that neutrophils, first responders to an implanted biomaterial, prime the microenvironment for recruited immune cells by secreting factors and releasing neutrophil extracellular traps (NETs) through NETosis. In this study, we investigated the role of electrospun template architecture and composition in regulating NETosis. Electrospun polydioxanone (PDO), collagen type I (COL), and blended PDO-COL templates (PC) were fabricated with small-diameter (0.25-0.35 μm) and large-diameter (1.0-2.00 μm) fibers. Neutrophil-template interactions were evaluated in vitro for 3 and 24 h with human neutrophils, and the PDO templates were studied in vivo (rat subcutaneous model) for 1 and 7 days. Template-bound NETs were quantified by fluorescent microscopy and an On-cell Western assay. The in vitro results indicate that larger fiber diameters reduced NETosis on PDO templates, whereas the incorporation of COL attenuated NETosis independent of fiber diameter. The in vivo results similarly revealed a lower degree of NETs on large-diameter PDO templates at 1 day, resulting in marginal tissue integration of the templates at 7 days. In contrast, the small-diameter PDO templates, which were coated in a large amount of NETs at 24 h in vivo, were surrounded by capsule-like tissue at 7 days. These preliminary in vivo results validate the in vitro model and signify NETosis as a potentially significant physiological response and a critical preconditioning event for the innate immune response to templates. In conclusion, these results demonstrate the importance of characterizing the neutrophil\u27s acute confrontation with biomaterials to engineer templates capable of promoting in situ regeneration

    Surface Area to Volume Ratio of Electrospun Polydioxanone Templates Regulates the Adsorption of Soluble Proteins from Human Serum

    No full text
    Neutrophils, the first cells that interact with surface-adsorbed proteins on biomaterials, have been increasingly recognized as critical maestros in the foreign body response for guided tissue regeneration. Recent research has shown that small diameter (SD) fibers of electrospun tissue regeneration templates, which have a high surface area to volume ratio (SAVR), enhance the release of neutrophil extracellular traps (NETs) compared to large diameter (LD) fibers, resulting in impaired tissue regeneration. In this study, we evaluated the adsorption of eight human serum proteins on the surface of electrospun templates to investigate how protein adsorption may regulate the release of NETs. Electrospun polydioxanone templates made from SD fibers with high SAVR and LD fibers with low SAVR, were incubated with 0.2% human serum and in situ protein adsorption was quantified with infrared-based immunodetection. Of the detected proteins, IgM and vitronectin adsorbed at low levels, suggesting that they do not play a central role in the release of NETs. Contrastingly, albumin and IgG adsorbed rapidly to the surface of the templates. One-hundred to 200 times more IgG adsorbed on the templates compared to albumin, with significantly greater adsorption occurring on the SD templates with high SAVR. Given that neutrophils express receptors that interact with IgG during phagocytosis and NET release, these results suggest that SAVR-dependent adsorption of IgG on the SD electrospun templates may contribute to the up-regulated release of NETs. Overall, this study may aid in the design of immunomodulatory biomaterials that regulate NET release and thus the potential for neutrophil-driven tissue regeneration
    corecore