147 research outputs found

    First complete genome sequence of infectious laryngotracheitis virus

    Get PDF
    BACKGROUND: Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in chickens worldwide. To date, only one complete genomic sequence of ILTV has been reported. This sequence was generated by concatenating partial sequences from six different ILTV strains. Thus, the full genomic sequence of a single (individual) strain of ILTV has not been determined previously. This study aimed to use high throughput sequencing technology to determine the complete genomic sequence of a live attenuated vaccine strain of ILTV. RESULTS: The complete genomic sequence of the Serva vaccine strain of ILTV was determined, annotated and compared to the concatenated ILTV reference sequence. The genome size of the Serva strain was 152,628 bp, with a G + C content of 48%. A total of 80 predicted open reading frames were identified. The Serva strain had 96.5% DNA sequence identity with the concatenated ILTV sequence. Notably, the concatenated ILTV sequence was found to lack four large regions of sequence, including 528 bp and 594 bp of sequence in the UL29 and UL36 genes, respectively, and two copies of a 1,563 bp sequence in the repeat regions. Considerable differences in the size of the predicted translation products of 4 other genes (UL54, UL30, UL37 and UL38) were also identified. More than 530 single-nucleotide polymorphisms (SNPs) were identified. Most SNPs were located within three genomic regions, corresponding to sequence from the SA-2 ILTV vaccine strain in the concatenated ILTV sequence. CONCLUSIONS: This is the first complete genomic sequence of an individual ILTV strain. This sequence will facilitate future comparative genomic studies of ILTV by providing an appropriate reference sequence for the sequence analysis of other ILTV strains

    Stochastically Timed Competition Between Division and Differentiation Fates Regulates the Transition From B Lymphoblast to Plasma Cell

    Get PDF
    In response to external stimuli, naïve B cells proliferate and take on a range of fates important for immunity. How their fate is determined is a topic of much recent research, with candidates including asymmetric cell division, lineage priming, stochastic assignment, and microenvironment instruction. Here we manipulate the generation of plasmablasts from B lymphocytes in vitro by varying CD40 stimulation strength to determine its influence on potential sources of fate control. Using long-term live cell imaging, we directly measure times to differentiate, divide, and die of hundreds of pairs of sibling cells. These data reveal that while the allocation of fates is significantly altered by signal strength, the proportion of siblings identified with asymmetric fates is unchanged. In contrast, we find that plasmablast generation is enhanced by slowing times to divide, which is consistent with a hypothesis of competing timed stochastic fate outcomes. We conclude that this mechanistically simple source of alternative fate regulation is important, and that useful quantitative models of signal integration can be developed based on its principles

    A minimum of two distinct heritable factors are required to explain correlation structures in proliferating lymphocytes

    Get PDF
    During the adaptive immune response, lymphocyte populations undergo a characteristic three-phase process: expansion through a series of cell divisions; cessation of expansion; and, finally, most of the accumulated lymphocytes die by apoptosis. The data used, thus far, to inform understanding of these processes, both in vitro and in vivo, are taken from flow cytometry experiments. One significant drawback of flow cytometry is that individual cells cannot be tracked, so that it is not possible to investigate interdependencies in the fate of cells within a family tree. This deficit in experimental information has recently been overcome by Hawkins et al. (Hawkins et al. 2009 Proc. Natl Acad. Sci. USA 106, 13 457–13 462 (doi:10.1073/pnas.0905629106)), who reported on time-lapse microscopy experiments in which B-cells were stimulated through the TLR-9 receptor. Cells stimulated in this way do not aggregate, so that data regarding family trees can be recorded. In this article, we further investigate the Hawkins et al. data. Our conclusions are striking: in order to explain the familial correlation structure in division times, death times and propensity to divide, a minimum of two distinct heritable factors are necessary. As the data show that two distinct factors are necessary, we develop a stochastic model that has two heritable factors and demonstrate that it can reproduce the key features of the data. This model shows that two heritable factors are sufficient. These deductions have a clear impact upon biological understanding of the adaptive immune response. They also necessitate changes to the fundamental premises behind the tools developed by statisticians to draw deductions from flow cytometry data. Finally, they affect the mathematical modelling paradigms that are used to study these systems, as these are widely developed based on assumptions of cellular independence that are not accurate

    Modelling collective cell behaviour

    Get PDF
    The classical mean-field approach to modelling biological systems makes a number of simplifying assumptions which typically lead to coupled systems of reaction-diffusion partial differential equations. While these models have been very useful in allowing us to gain important insights into the behaviour of many biological systems, recent experimental advances in our ability to track and quantify cell behaviour now allow us to build more realistic models which relax some of the assumptions previously made. This brief review aims to illustrate the type of models obtained using this approach

    Mucedorus: the last ludic playbook, the first stage Arcadia

    Get PDF
    This article argues that two seemingly contradictory factors contributed to and sustained the success of the anonymous Elizabethan play Mucedorus (c. 1590; pub. 1598). First, that both the initial composition of Mucedorus and its Jacobean revival were driven in part by the popularity of its source, Philip Sidney's Arcadia. Second, the playbook's invitation to amateur playing allowed its romance narrative to be adopted and repurposed by diverse social groups. These two factors combined to create something of a paradox, suggesting that Mucedorus was both open to all yet iconographically connected to an elite author's popular text. This study will argue that Mucedorus pioneered the fashion for “continuations” or adaptations of the famously unfinished Arcadia, and one element of its success in print was its presentation as an affordable and performable version of Sidney's elite work. The Jacobean revival of Mucedorus by the King's Men is thus evidence of a strategy of engagement with the Arcadia designed to please the new Stuart monarchs. This association with the monarchy in part determined the cultural functions of the Arcadia and Mucedorus through the Interregnum to the close of the seventeenth century

    Models, measurement and inference in epithelial tissue dynamics

    Get PDF
    The majority of solid tumours arise in epithelia and therefore much research effort has gone into investigating the growth, renewal and regulation of these tissues. Here we review different mathematical and computational approaches that have been used to model epithelia. We compare different models and describe future challenges that need to be overcome in order to fully exploit new data which present, for the first time, the real possibility for detailed model validation and comparison

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Normative Perspectives for Ethical and Socially Responsible Marketing

    Full text link
    corecore