338 research outputs found

    Provider Perspectives: Working with the Male Lifer Reentry Population

    Get PDF
    The passage of Proposition 57 in California creates a path to parole for individuals who experienced long-term continuous incarceration. For the first time, men who experienced long-term incarceration are joining reentry populations in California, establishing an emerging subpopulation of men on parole who were incarcerated for life sentences or experienced long-term continuous incarceration. In the San Francisco Bay Area, most of these men will receive mental health services provided by Community Mental Health agencies or California Department of Rehabilitation and Correction (CDRC). Research suggests that men who experience continuous long-term incarceration may have symptoms of Post-Incarceration Syndrome (PICS). However, few studies have investigated mental health professionals’ experiences of working with individuals who have been released after experiencing long-term continuous incarceration. Interpretive phenomenological analysis was utilized by the researcher because of the strong need to explore and better understand what providers with clinical expertise are currently experiencing while working with this population. The researcher interviewed four licensed mental health professionals who provide psychological services to this population. Qualitative analysis produced novel findings on 1) how providers understand this unique population, 2) the clinical presentation of PICS, 3) building therapeutic alliances with men who have experienced long-term incarceration, 4) current treatment interventions, and 5) the importance for more clinical training to support the needs of this emerging population. This study also provided insight into treatment implications and the need for further research that supports clinical best practices

    Computer-aided diagnosis for (123I)FP-CIT imaging: impact on clinical reporting

    Get PDF
    BACKGROUND: For (123I)FP-CIT imaging, a number of algorithms have shown high performance in distinguishing normal patient images from those with disease, but none have yet been tested as part of reporting workflows. This study aims to evaluate the impact on reporters' performance of a computer-aided diagnosis (CADx) tool developed from established machine learning technology. Three experienced (123I)FP-CIT reporters (two radiologists and one clinical scientist) were asked to visually score 155 reconstructed clinical and research images on a 5-point diagnostic confidence scale (read 1). Once completed, the process was then repeated (read 2). Immediately after submitting each image score for a second time, the CADx system output was displayed to reporters alongside the image data. With this information available, the reporters submitted a score for the third time (read 3). Comparisons between reads 1 and 2 provided evidence of intra-operator reliability, and differences between reads 2 and 3 showed the impact of the CADx. RESULTS: The performance of all reporters demonstrated a degree of variability when analysing images through visual analysis alone. However, inclusion of CADx improved consistency between reporters, for both clinical and research data. The introduction of CADx increased the accuracy of the radiologists when reporting (unfamiliar) research images but had less impact on the clinical scientist and caused no significant change in accuracy for the clinical data. CONCLUSIONS: The outcomes for this study indicate the value of CADx as a diagnostic aid in the clinic and encourage future development for more refined incorporation into clinical practice

    Are component positioning and prosthesis size associated with hip resurfacing failure?

    Get PDF
    BACKGROUND: Recent studies suggest that there is a learning curve for metal-on-metal hip resurfacing. The purpose of this study was to assess whether implant positioning changed with surgeon experience and whether positioning and component sizing were associated with implant longevity. METHODS: We evaluated the first 361 consecutive hip resurfacings performed by a single surgeon, which had a mean follow-up of 59 months (range, 28 to 87 months). Pre and post-operative radiographs were assessed to determine the inclination of the acetabular component, as well as the sagittal and coronal femoral stem-neck angles. Changes in the precision of component placement were determined by assessing changes in the standard deviation of each measurement using variance ratio and linear regression analysis. Additionally, the cup and stem-shaft angles as well as component sizes were compared between the 31 hips that failed over the follow-up period and the surviving components to assess for any differences that might have been associated with an increased risk for failure. RESULTS: Surgeon experience was correlated with improved precision of the antero-posterior and lateral positioning of the femoral component. However, femoral and acetabular radiographic implant positioning angles were not different between the surviving hips and failures. The failures had smaller mean femoral component diameters as compared to the non-failure group (44 versus 47 millimeters). CONCLUSIONS: These results suggest that there may be differences in implant positioning in early versus late learning curve procedures, but that in the absence of recognized risk factors such as intra-operative notching of the femoral neck and cup inclination in excess of 50 degrees, component positioning does not appear to be associated with failure. Nevertheless, surgeons should exercise caution in operating patients with small femoral necks, especially when they are early in the learning curve

    Inferior outcome after hip resurfacing arthroplasty than after conventional arthroplasty: Evidence from the Nordic Arthroplasty Register Association (NARA) database, 1995 to 2007

    Get PDF
    Today, total hip arthroplasty (THA) is one of the safest and most efficient surgical treatments. New materials, surgical techniques and design concepts intended to improve THA have not always been successful. Thorough preclinical and early clinical investigations can detect some aspects of under-performing, while continuing surveillance is recommended to detect and analyze reasons for any later appearing flaws. In this thesis, several ways to monitor and assess THA performance are explored and carried out, using survival analysis in registry studies, radiostereometry (RSA), radiology and clinical outcome. In Paper I, a study using the Nordic Arthroplasty Register Association (NARA) registry shows that HRA had an almost 3-fold increased early non-septic revision risk and that risk factors were found to be female sex, certain HRA designs and units having performed few HRA procedures. Papers II and III contain comparisons of highly cross-linked polyethylene (XLPE) and conventional polyethylene (PE). XLPE had a considerably lower wear rate up to 10 years but showed no obvious improvements regarding implant fixation, BMD or clinical outcome. In the NARA registry, in 2 of 4 studied cup designs the XLPE version had a lower risk of revision for aseptic loosening compared to the PE version. Paper IV describes that stem subsidence and retrotorsion measured with RSA at 2 years predicted later aseptic stem failure in an unfavorably altered, previously well-functioning cemented femoral stem. In Paper V and VI, a novel approach to measure articulation wear with RSA in radiodense hip arthroplasty articulations was presented and evaluated. Subsequently, a comparison between ceramic-on-ceramic (COC) and metal-on-conventional PE uncemented THA displayed a considerably lower wear rate, smaller periacetabular bone lesions and a relatively high squeaking rate, the latter with unknown long-term consequences, in the COC hips. Implant fixation, heterotopic ossification and clinical outcome did not differ between articulation types. In conclusion, it was confirmed that implant surveillance can be done with RSA, also in radiodense THA. Early migration predicts later aseptic implant failure. Prolonged surveillance can confirm long-term material and design performance, verify or contradict anticipated advantages as well as detect unanticipated long-term complications

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Shaping Skeletal Growth by Modular Regulatory Elements in the Bmp5 Gene

    Get PDF
    Cartilage and bone are formed into a remarkable range of shapes and sizes that underlie many anatomical adaptations to different lifestyles in vertebrates. Although the morphological blueprints for individual cartilage and bony structures must somehow be encoded in the genome, we currently know little about the detailed genomic mechanisms that direct precise growth patterns for particular bones. We have carried out large-scale enhancer surveys to identify the regulatory architecture controlling developmental expression of the mouse Bmp5 gene, which encodes a secreted signaling molecule required for normal morphology of specific skeletal features. Although Bmp5 is expressed in many skeletal precursors, different enhancers control expression in individual bones. Remarkably, we show here that different enhancers also exist for highly restricted spatial subdomains along the surface of individual skeletal structures, including ribs and nasal cartilages. Transgenic, null, and regulatory mutations confirm that these anatomy-specific sequences are sufficient to trigger local changes in skeletal morphology and are required for establishing normal growth rates on separate bone surfaces. Our findings suggest that individual bones are composite structures whose detailed growth patterns are built from many smaller lineage and gene expression domains. Individual enhancers in BMP genes provide a genomic mechanism for controlling precise growth domains in particular cartilages and bones, making it possible to separately regulate skeletal anatomy at highly specific locations in the body
    • …
    corecore