19 research outputs found

    Identification of the nature of traps involved in the field cycling of Hfâ‚€.â‚…Zrâ‚€.â‚…Oâ‚‚-based ferroelectric thin films

    Get PDF
    The discovery of ferroelectricity in hafnium oxide has revived the interest in ferroelectric memories as a viable option for low power non-volatile memories. However, due to the high coercive field of ferroelectric hafnium oxide, instabilities in the field cycling process are commonly observed and explained by the defect movement, defect generation and field induced phase transitions. In this work, the optical and transport experiments are combined with ab-initio simulations and transport modeling to validate that the defects which act as charge traps in ferroelectric active layers are oxygen vacancies. A new oxygen vacancy generation leads to a fast growth of leakage currents and a consequent degradation of the ferroelectric response in Hfâ‚€.â‚…Zrâ‚€.â‚…Oâ‚‚ films. Two possible pathways of the Hfâ‚€.â‚…Zrâ‚€.â‚…Oâ‚‚ ferroelectric property degradation are discussed

    On the Reliability of HZO-Based Ferroelectric Capacitors: The Cases of Ru and TiN Electrodes

    No full text
    Despite the great potential of Hf0.5Zr0.5O2 (HZO) ferroelectrics, reliability issues, such as wake-up, fatigue, endurance limitations, imprint and retention loss, impede the implementation of HZO to nonvolatile memory devices. Herein, a study of the reliability properties in HZO-based stacks with the conventional TiN top electrode and Ru electrode, which is considered a promising alternative to TiN, is performed. An attempt to distinguish the mechanisms underlying the wake-up, fatigue and retention loss in both kinds of stacks is undertaken. Overall, both stacks show pronounced wake-up and retention loss. Moreover, the fatigue and retention loss were found to be worsened by Ru implementation. The huge fatigue was suggested to be because Ru does not protect HZO against oxygen vacancies generation during prolonged cycling. The vacancies generated in the presence of Ru are most likely deeper traps, as compared to the traps formed at the interface with the TiN electrode. Implementing the new procedure, which can separate the depolarization-caused retention loss from the imprint-caused one, reveal a rise in the depolarization contribution with Ru implementation, accompanied by the maintenance of similarly high imprint, as in the case with the TiN electrode. Results show that the mechanisms behind the reliability issues in HZO-based capacitors are very electrode dependent and simple approaches to replacing the TiN electrode with the one providing, for example, just higher remnant polarization or lower leakages, become irrelevant on closer examination

    Ferroelectric Second-Order Memristor

    No full text
    While the conductance of a first-order memristor is defined entirely by the external stimuli, in the second-order memristor it is governed by the both the external stimuli and its instant internal state. As a result, the dynamics of such devices allows to naturally emulate the temporal behavior of biological synapses, which encodes the spike timing information in synaptic weights. Here, we demonstrate a new type of second-order memristor functionality in the ferroelectric HfO2-based tunnel junction on silicon. The continuous change of conductance in the p+-Si/Hf0.5Zr0.5O2/TiN tunnel junction is achieved via the gradual switching of polarization in ferroelectric domains of polycrystalline Hf0.5Zr0.5O2 layer, whereas the combined dynamics of the built-in electric field and charge trapping/detrapping at the defect states at the bottom Si interface defines the temporal behavior of the memristor device, similar to synapses in biological systems. The implemented ferroelectric second-order memristor exhibits various synaptic functionalities, such as paired-pulse potentiation/depression and spike-rate-dependent plasticity, and can serve as a building block for the development of neuromorphic computing architectures

    Origin of the retention loss in ferroelectric Hf0.5Zr0.5O2Hf_{0.5}Zr_{0.5}O_{2}-based memory devices

    No full text
    For the decade, ferroelectric hafnium oxide films are attracting the interest as a promising functional material for nonvolatile ferroelectric random access memory due to full scalability and complementary metal-oxide-semiconductor integratability. Despite the significant progress in key performance parameters, particularly, the readout charge and voltage as well as the endurance, the developed devices can only be implemented by the electronics industry if they exhibit a standard retention time of 10 years. Material engineering modifies not only target ferroelectric properties, but also the retention time. To understand how to maintain the sufficient retention, the physical mechanism behind it should be clarified. For this purpose, we have fabricated the capacitor memory cell with a high rate of retention loss. Comparing the device performance with the results of capacitance transient spectroscopy, operando hard X-ray photoelectron spectroscopy and in situ piezoresponse force microscopy, we have concluded that the retention loss is caused by the accumulation of the positively charged oxygen vacancies at the interfaces with capacitor electrodes. The redistribution of charges during long-term storage of information is fully defined by the domain structure in memory cell

    Effect of Domain Structure and Dielectric Interlayer on Switching Speed of Ferroelectric Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> Film

    No full text
    The nanosecond speed of information writing and reading is recognized as one of the main advantages of next-generation non-volatile ferroelectric memory based on hafnium oxide thin films. However, the kinetics of polarization switching in this material have a complex nature, and despite the high speed of internal switching, the real speed can deteriorate significantly due to various external reasons. In this work, we reveal that the domain structure and the dielectric layer formed at the electrode interface contribute significantly to the polarization switching speed of 10 nm thick Hf0.5Zr0.5O2 (HZO) film. The mechanism of speed degradation is related to the generation of charged defects in the film which accompany the formation of the interfacial dielectric layer during oxidization of the electrode. Such defects are pinning centers that prevent domain propagation upon polarization switching. To clarify this issue, we fabricate two types of similar W/HZO/TiN capacitor structures, differing only in the thickness of the electrode interlayer, and compare their ferroelectric (including local ferroelectric), dielectric, structural (including microstructural), chemical, and morphological properties, which are comprehensively investigated using several advanced techniques, in particular, hard X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electron beam induced current technique

    Broadband Optical Properties of Atomically Thin PtS2 and PtSe2

    No full text
    Noble transition metal dichalcogenides (TMDCs) such as PtS2 and PtSe2 show significant potential in a wide range of optoelectronic and photonic applications. Noble TMDCs, unlike standard TMDCs such as MoS2 and WS2, operate in the ultrawide spectral range from ultraviolet to mid-infrared wavelengths; however, their properties remain largely unexplored. Here, we measured the broadband (245&ndash;3300 nm) optical constants of ultrathin PtS2 and PtSe2 films to eliminate this gap and provide a foundation for optoelectronic device simulation. We discovered their broadband absorption and high refractive index both theoretically and experimentally. Based on first-principle calculations, we also predicted their giant out-of-plane optical anisotropy for monocrystals. As a practical illustration of the obtained optical properties, we demonstrated surface plasmon resonance biosensors with PtS2 or PtSe2 functional layers, which dramatically improves sensor sensitivity by 60 and 30%, respectively

    Field-Effect Transistor Based on 2D Microcrystalline MoS<sub>2</sub> Film Grown by Sulfurization of Atomically Layer Deposited MoO<sub>3</sub>

    No full text
    Atomically thin molybdenum disulfide (MoS2) is a promising channel material for next-generation thin-body field-effect transistors (FETs), which makes the development of methods allowing for its controllable synthesis over a large area an essential task. Currently, one of the cost-effective ways of its synthesis is the sulfurization of preliminary grown oxide- or metallic film. However, despite apparent progress in this field, the electronic quality of the obtained MoS2 is inferior to that of exfoliated samples, making the detailed investigation of the sulfurized films’ properties of great interest. In this work, we synthesized continuous MoS2 films with a thickness of ≈2.2 nm via the sulfurization of an atomic-layer-deposited MoO3 layer. X-ray photoelectron spectroscopy, transmission electron microscopy, and Raman spectroscopy indicated the appropriate chemical composition and microcrystalline structure of the obtained MoS2 films. The semiconductor quality of the synthesized films was confirmed by the fabrication of a field-effect transistor (FET) with an Ion/Ioff ratio of ≈40, which was limited primarily by the high contact resistance. The Schottky barrier height at the Au/MoS2 interface was found to be ≈1.2 eV indicating the necessity of careful contact engineering. Due to its simplicity and cost-effectiveness, such a technique of MoS2 synthesis still appears to be highly attractive for its applications in next-generation microelectronics. Therefore, further research of the electronic properties of films obtained via this technique is required
    corecore