17 research outputs found

    An unexpected twist to the activation of IKKβ:TAK1 primes IKKβ for activation by autophosphorylation

    Get PDF
    IKKβ {IκB [inhibitor of NF-κB (nuclear factor κB)] kinase β} is required to activate the transcription factor NF-κB, but how IKKβ itself is activated in vivo is still unclear. It was found to require phosphorylation by one or more ‘upstream’ protein kinases in some reports, but by autophosphorylation in others. In the present study, we resolve this contro-versy by demonstrating that the activation of IKKβ induced by IL-1 (interleukin-1) or TNF (tumour necrosis factor) in embryonic fibroblasts, or by ligands that activate Toll-like receptors in macrophages, requires two distinct phosphorylation events: first, the TAK1 [TGFβ (transforming growth factor β)-activated kinase-1]-catalysed phosphorylation of Ser(177) and, secondly, the IKKβ-catalysed autophosphorylation of Ser(181). The phosphorylation of Ser(177) by TAK1 is a priming event required for the subsequent autophosphorylation of Ser(181), which enables IKKβ to phosphorylate exogenous substrates. We also provide genetic evidence which indicates that the IL-1-stimulated, LUBAC (linear ubiquitin chain assembly complex)-catalysed formation of linear ubiquitin chains and their interaction with the NEMO (NF-κB essential modulator) component of the canonical IKK complex permits the TAK1-catalysed priming phosphorylation of IKKβ at Ser(177) and IKKα at Ser(176). These findings may be of general significance for the activation of other protein kinases

    Epigenome Microarray Platform for Proteome-Wide Dissection of Chromatin-Signaling Networks

    Get PDF
    Knowledge of protein domains that function as the biological effectors for diverse post-translational modifications of histones is critical for understanding how nuclear and epigenetic programs are established. Indeed, mutations of chromatin effector domains found within several proteins are associated with multiple human pathologies, including cancer and immunodeficiency syndromes. To date, relatively few effector domains have been identified in comparison to the number of modifications present on histone and non-histone proteins. Here we describe the generation and application of human modified peptide microarrays as a platform for high-throughput discovery of chromatin effectors and for epitope-specificity analysis of antibodies commonly utilized in chromatin research. Screening with a library containing a majority of the Royal Family domains present in the human proteome led to the discovery of TDRD7, JMJ2C, and MPP8 as three new modified histone-binding proteins. Thus, we propose that peptide microarray methodologies are a powerful new tool for elucidating molecular interactions at chromatin

    A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins

    Get PDF
    Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin similar to 100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants

    Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase.

    Get PDF
    Metformin is a first-line drug for the treatment of individuals with type 2 diabetes, yet its precise mechanism of action remains unclear. Metformin exerts its antihyperglycemic action primarily through lowering hepatic glucose production (HGP). This suppression is thought to be mediated through inhibition of mitochondrial respiratory complex I, and thus elevation of 5'-adenosine monophosphate (AMP) levels and the activation of AMP-activated protein kinase (AMPK), though this proposition has been challenged given results in mice lacking hepatic AMPK. Here we report that the AMP-inhibited enzyme fructose-1,6-bisphosphatase-1 (FBP1), a rate-controlling enzyme in gluconeogenesis, functions as a major contributor to the therapeutic action of metformin. We identified a point mutation in FBP1 that renders it insensitive to AMP while sparing regulation by fructose-2,6-bisphosphate (F-2,6-P2), and knock-in (KI) of this mutant in mice significantly reduces their response to metformin treatment. We observe this during a metformin tolerance test and in a metformin-euglycemic clamp that we have developed. The antihyperglycemic effect of metformin in high-fat diet-fed diabetic FBP1-KI mice was also significantly blunted compared to wild-type controls. Collectively, we show a new mechanism of action for metformin and provide further evidence that molecular targeting of FBP1 can have antihyperglycemic effects

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Protein phosphatase 4 interacts with the survival of motor neurons complex and enhances the temporal localisation of snRNPs

    No full text
    Protein phosphatase 4 (PPP4) is a ubiquitous essential protein serine/threonine phosphatase found in higher eukaryotes. Coordinate variation of the levels of the catalytic subunit (PPP4c) and the regulatory subunit (112) suggests that PPP4c and R2 form a heterodimeric core to which other regulatory subunits bind. Two proteins that specifically co-purify with Flag-epitope-tagged R2 expressed in HEK-293 cells were identified as Gemin3 and Gemin4. These two proteins have been identified previously as components of the Survival of Motor Neurons (SMN) protein complex, which is functionally defective in the hereditary disorder spinal muscular atrophy. Immunosedimentation of the epitope-tagged SMN protein complex from HeLa cells expressing CFP-SMN showed that the SMN protein interacts, as previously reported, with Gemin2 (SIP1), Gemin3 and Gemin4 and in addition associates with PPP4c. The SMN complex has been implicated in the assembly and maturation of small nuclear ribonucleoproteins (snRNPs). Expression of GFP-R2-PPP4c in HeLa cells enhances the temporal localisation of newly formed snRNPs, which is consistent with an association of R2-PPP4c with the SMN protein complex.</p
    corecore