1,891 research outputs found

    Barriers to recovery and recommendations for change: the Pennsylvania Consensus Conference on psychiatry\u27s role.

    Get PDF
    OBJECTIVE: Recovery has emerged over the past decade as a dominant theme in public mental health care. METHODS: The 2006 Pennsylvania Consensus Conference brought together 24 community psychiatrists to explore the barriers they experienced in promoting recovery and their recommendations for change. RESULTS: Twelve barriers were identified and classified into one of three categories: psychiatry knowledge, roles, and training; the need to transform public mental health systems and services; and environmental barriers to opportunity. Participants made 22 recommendations to address these barriers through changes in policies, programs, and psychiatric knowledge and practice. CONCLUSIONS: The recommendations identify areas for change that can be accomplished through individual psychiatrist action and organized group efforts

    The geometry of reaction norms yields insights on classical fitness functions for Great Lakes salmon.

    Get PDF
    Life history theory examines how characteristics of organisms, such as age and size at maturity, may vary through natural selection as evolutionary responses that optimize fitness. Here we ask how predictions of age and size at maturity differ for the three classical fitness functions-intrinsic rate of natural increase r, net reproductive rate R0, and reproductive value Vx-for semelparous species. We show that different choices of fitness functions can lead to very different predictions of species behavior. In one's efforts to understand an organism's behavior and to develop effective conservation and management policies, the choice of fitness function matters. The central ingredient of our approach is the maturation reaction norm (MRN), which describes how optimal age and size at maturation vary with growth rate or mortality rate. We develop a practical geometric construction of MRNs that allows us to include different growth functions (linear growth and nonlinear von Bertalanffy growth in length) and develop two-dimensional MRNs useful for quantifying growth-mortality trade-offs. We relate our approach to Beverton-Holt life history invariants and to the Stearns-Koella categorization of MRNs. We conclude with a detailed discussion of life history parameters for Great Lakes Chinook Salmon and demonstrate that age and size at maturity are consistent with predictions using R0 (but not r or Vx) as the underlying fitness function

    Scaling in Late Stage Spinodal Decomposition with Quenched Disorder

    Full text link
    We study the late stages of spinodal decomposition in a Ginzburg-Landau mean field model with quenched disorder. Random spatial dependence in the coupling constants is introduced to model the quenched disorder. The effect of the disorder on the scaling of the structure factor and on the domain growth is investigated in both the zero temperature limit and at finite temperature. In particular, we find that at zero temperature the domain size, R(t)R(t), scales with the amplitude, AA, of the quenched disorder as R(t)=Aβf(t/Aγ)R(t) = A^{-\beta} f(t/A^{-\gamma}) with β1.0\beta \simeq 1.0 and γ3.0\gamma \simeq 3.0 in two dimensions. We show that β/γ=α\beta/\gamma = \alpha, where α\alpha is the Lifshitz-Slyosov exponent. At finite temperature, this simple scaling is not observed and we suggest that the scaling also depends on temperature and AA. We discuss these results in the context of Monte Carlo and cell dynamical models for phase separation in systems with quenched disorder, and propose that in a Monte Carlo simulation the concentration of impurities, cc, is related to AA by Ac1/dA \sim c^{1/d}.Comment: RevTex manuscript 5 pages and 5 figures (obtained upon request via email [email protected]

    New fields on super Riemann surfaces

    Full text link
    A new (1,1)(1,1)-dimensional super vector bundle which exists on any super Riemann surface is described. Cross-sections of this bundle provide a new class of fields on a super Riemann surface which closely resemble holomorphic functions on a super Riemann surface, but which (in contrast to the case with holomorphic functions) form spaces which have a well defined dimension which does not change as odd moduli become non-zero.Comment: 12pp, kcl-th-94-

    Deciphering the Plant Splicing Code: Experimental and Computational Approaches for Predicting Alternative Splicing and Splicing Regulatory Elements

    Get PDF
    Extensive alternative splicing (AS) of precursor mRNAs (pre-mRNAs) in multicellular eukaryotes increases the protein-coding capacity of a genome and allows novel ways to regulate gene expression. In flowering plants, up to 48% of intron-containing genes exhibit AS. However, the full extent of AS in plants is not yet known, as only a few high-throughput RNA-Seq studies have been performed. As the cost of obtaining RNA-Seq reads continues to fall, it is anticipated that huge amounts of plant sequence data will accumulate and help in obtaining a more complete picture of AS in plants. Although it is not an onerous task to obtain hundreds of millions of reads using high-throughput sequencing technologies, computational tools to accurately predict and visualize AS are still being developed and refined. This review will discuss the tools to predict and visualize transcriptome-wide AS in plants using short-reads and highlight their limitations. Comparative studies of AS events between plants and animals have revealed that there are major differences in the most prevalent types of AS events, suggesting that plants and animals differ in the way they recognize exons and introns. Extensive studies have been performed in animals to identify cis-elements involved in regulating AS, especially in exon skipping. However, few such studies have been carried out in plants. Here, we review the current state of research on splicing regulatory elements (SREs) and briefly discuss emerging experimental and computational tools to identify cis-elements involved in regulation of AS in plants. The availability of curated alternative splice forms in plants makes it possible to use computational tools to predict SREs involved in AS regulation, which can then be verified experimentally. Such studies will permit identification of plant-specific features involved in AS regulation and contribute to deciphering the splicing code in plants

    Psychological factors and cardiac repolarization instability during anger in implantable cardioverter defibrillator patients

    Get PDF
    BACKGROUND: Evidence indicates that emotions such as anger are associated with increased incidence of sudden cardiac death, but the biological mechanisms remain unclear. We tested the hypothesis that, in patients with sudden death vulnerability, anger would be associated with arrhythmic vulnerability, indexed by cardiac repolarization instability. METHODS: Patients with coronary artery disease (CAD) and an implantable cardioverter defibrillator (ICD; n = 41) and healthy controls (n = 26) gave an anger‐inducing speech (anger recall), rated their current (state) anger, and completed measures of trait (chronic) levels of Anger and Hostility. Repolarization instability was measured using QT Variability Index (QTVI) at resting baseline and during anger recall using continuous ECG. RESULTS: ICD patients had significantly higher QTVI at baseline and during anger recall compared with controls, indicating greater arrhythmic vulnerability overall. QTVI increased from baseline to anger recall to a similar extent in both groups. In ICD patients but not controls, during anger recall, self‐rated anger was related to QTVI (r = .44, p = .007). Trait (chronic) Anger Expression (r = .26, p = .04), Anger Control (r = −.26, p = .04), and Hostility (r = .25, p = .05) were each associated with the change in QTVI from baseline to anger recall (ΔQTVI). Moderation analyses evaluated whether psychological trait associations with ΔQTVI were specific to the ICD group. Results indicated that Hostility scores predicted ΔQTVI from baseline to anger recall in ICD patients (β = 0.07, p = .01), but not in controls. CONCLUSIONS: Anger increases repolarization lability, but in patients with CAD and arrhythmic vulnerability, chronic and acute anger interact to trigger cardiac repolarization lability associated with susceptibility to malignant arrhythmias

    Infinite factorization of multiple non-parametric views

    Get PDF
    Combined analysis of multiple data sources has increasing application interest, in particular for distinguishing shared and source-specific aspects. We extend this rationale of classical canonical correlation analysis into a flexible, generative and non-parametric clustering setting, by introducing a novel non-parametric hierarchical mixture model. The lower level of the model describes each source with a flexible non-parametric mixture, and the top level combines these to describe commonalities of the sources. The lower-level clusters arise from hierarchical Dirichlet Processes, inducing an infinite-dimensional contingency table between the views. The commonalities between the sources are modeled by an infinite block model of the contingency table, interpretable as non-negative factorization of infinite matrices, or as a prior for infinite contingency tables. With Gaussian mixture components plugged in for continuous measurements, the model is applied to two views of genes, mRNA expression and abundance of the produced proteins, to expose groups of genes that are co-regulated in either or both of the views. Cluster analysis of co-expression is a standard simple way of screening for co-regulation, and the two-view analysis extends the approach to distinguishing between pre- and post-translational regulation

    Identification of miRNA signatures associated with radiation-induced late lung injury in mice.

    Get PDF
    Acute radiation exposure of the thorax can lead to late serious, and even life-threatening, pulmonary and cardiac damage. Sporadic in nature, late complications tend to be difficult to predict, which prompted this investigation into identifying non-invasive, tissue-specific biomarkers for the early detection of late radiation injury. Levels of circulating microRNA (miRNA) were measured in C3H and C57Bl/6 mice after whole thorax irradiation at doses yielding approximately 70% mortality in 120 or 180 days, respectively (LD70/120 or 180). Within the first two weeks after exposure, weight gain slowed compared to sham treated mice along with a temporary drop in white blood cell counts. 52% of C3H (33 of 64) and 72% of C57Bl/6 (46 of 64) irradiated mice died due to late radiation injury. Lung and heart damage, as assessed by computed tomography (CT) and histology at 150 (C3H mice) and 180 (C57Bl/6 mice) days, correlated well with the appearance of a local, miRNA signature in the lung and heart tissue of irradiated animals, consistent with inherent differences in the C3H and C57Bl/6 strains in their propensity for developing radiation-induced pneumonitis or fibrosis, respectively. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days after exposure and included miRNA known to regulate inflammation and fibrosis. Importantly, early changes in plasma miRNA expression predicted survival with reasonable accuracy (88-92%). The miRNA signature that predicted survival in C3H mice, including miR-34a-5p, -100-5p, and -150-5p, were associated with pro-inflammatory NF-κB-mediated signaling pathways, whereas the signature identified in C57Bl/6 mice (miR-34b-3p, -96-5p, and -802-5p) was associated with TGF-β/SMAD signaling. This study supports the hypothesis that plasma miRNA profiles could be used to identify individuals at high risk of organ-specific late radiation damage, with applications for radiation oncology clinical practice or in the context of a radiological incident
    corecore