41 research outputs found

    Customized care 2020: how medical sequencing and network biology will enable personalized medicine

    Get PDF
    Applications of next-generation nucleic acid sequencing technologies will lead to the development of precision diagnostics that will, in turn, be a major technology enabler of precision medicine. Terabyte-scale, multidimensional data sets derived using these technologies will be used to reverse engineer the specific disease networks that underlie individual patients’ conditions. Modeling and simulation of these networks in the presence of virtual drugs, and combinations of drugs, will identify the most efficacious therapy for precision medicine and customized care. In coming years the practice of medicine will routinely employ network biology analytics supported by high-performance supercomputing

    Primary structure and comparative sequence-analysis of an insect apolipoprotein: apolipophorin-Iii from Manduca-sexta

    Get PDF
    The amino acid sequence of an insect apolipoprotein, apolipophorin-III from Manduca sexta, was determined by a combination of cDNA and protein sequencing. The mature hemolymph protein consists of 166 amino acids. The cDNA also encodes for an amino-terminal extension of 23 amino acids which is not represented in the mature hemolymph protein. The existence of a precursor protein was confirmed by in vitro translation of fat body mRNA. Computer-assisted comparative sequence analysis revealed the following points: 1) the protein is composed of tandemly repeating tetradecapeptide units with a high potential for forming amphiphilic helical structures. Compared to mammalian apolipoproteins the repeat units in the insect apolipoprotein show considerable length variability; 2) the sequence has a striking resemblance to several human apolipoproteins including apoE, AIV, AI, and CI. However, the homology seems to be entirely functional since, although the insect and mammalian apoproteins contain very similar types of amino acid residues, the actual degree of sequence identity is quite low. Whether the mammalian and insect apoproteins are derived from a common ancestral amphiphilic helix forming, lipid-binding protein, or arose by convergent evolution can not be determined at present. This represents the first complete amino acid sequence for an insect apolipoprotein

    Comparative Analysis of Serine/Arginine-Rich Proteins across 27 Eukaryotes: Insights into Sub-Family Classification and Extent of Alternative Splicing

    Get PDF
    Alternative splicing (AS) of pre-mRNA is a fundamental molecular process that generates diversity in the transcriptome and proteome of eukaryotic organisms. SR proteins, a family of splicing regulators with one or two RNA recognition motifs (RRMs) at the N-terminus and an arg/ser-rich domain at the C-terminus, function in both constitutive and alternative splicing. We identified SR proteins in 27 eukaryotic species, which include plants, animals, fungi and “basal” eukaryotes that lie outside of these lineages. Using RNA recognition motifs (RRMs) as a phylogenetic marker, we classified 272 SR genes into robust sub-families. The SR gene family can be split into five major groupings, which can be further separated into 11 distinct sub-families. Most flowering plants have double or nearly double the number of SR genes found in vertebrates. The majority of plant SR genes are under purifying selection. Moreover, in all paralogous SR genes in Arabidopsis, rice, soybean and maize, one of the two paralogs is preferentially expressed throughout plant development. We also assessed the extent of AS in SR genes based on a splice graph approach (http://combi.cs.colostate.edu/as/gmap_SRgenes). AS of SR genes is a widespread phenomenon throughout multiple lineages, with alternative 3′ or 5′ splicing events being the most prominent type of event. However, plant-enriched sub-families have 57%–88% of their SR genes experiencing some type of AS compared to the 40%–54% seen in other sub-families. The SR gene family is pervasive throughout multiple eukaryotic lineages, conserved in sequence and domain organization, but differs in gene number across lineages with an abundance of SR genes in flowering plants. The higher number of alternatively spliced SR genes in plants emphasizes the importance of AS in generating splice variants in these organisms

    A transcriptomic analysis of Echinococcus granulosus larval stages:implications for parasite biology and host adaptation

    Get PDF
    The cestode Echinococcus granulosus--the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide--is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages.We generated ~10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs) prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces), and pepsin/H(+)-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i) a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep) that could either be active molecular species or represent precursors of small RNAs (like piRNAs); (ii) an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii) highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv) candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v) a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi) a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development.This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic analyses focused on cestodes and platyhelminths

    Mutational analysis of the β-subunit of yeast geranylgeranyl transferase I

    Full text link
    The gene CAL1 (also known as CDC43 ) of Saccharomyces cerevisiae encodes the β subunit of geranylgeranyl transferase I (GGTase I), which modifies several small GTPases. Biochemical analyses of the mutant-enzymes encoded by cal1 , and cdc43-2 to cdc43-7 , expressed in bacteria, have hown that all of the mutant enzymes possess reduced activity, and that none shows temerature-sensitive enzymatic activities. Nonetheless, all of the cal1/cdc43 mutants show temperature-sensitive growth phenotypes. Increase in soluble pools of the small GTPases was observed in the yeast mutant cells at the restrictive temperature in vivo, suggesting that the yeast prenylation pathway itself is temperative sensitive. The cal-1 mutation, located most proximal to the C-terminus of the protein, differs from the other cdc43 mutations in several respects. An increase in soluble Rholp was observed in the cal-1 strain grown at the restrictive temperature. The temperature-sensitive phenotype of cal-1 is most efficiently suppressed by overproduction of Rholp. Overproduction of the other essential target, Cdc42p, in contrast, is deleterious in cal-1 cells, but not in other cdc43 mutants or the wild-type strains. The cdc43-5 mutant cells accumulate Cdc42p in soluble pools and cdc43-5 is suppressed by overproduction of Cdc42p. Thus, several phenotypic differences are observed among the cal1/cdc43 mutations, possibly due to alterations in substrate specificity caused by the mutations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42258/1/438-252-1-2-1_62520001.pd
    corecore