55 research outputs found

    Decelerated dinosaur skull evolution with the origin of birds

    Get PDF
    © 2020 Felice et al. The evolutionary radiation of birds has produced incredible morphological variation, including a huge range of skull form and function. Investigating how this variation arose with respect to non-avian dinosaurs is key to understanding how birds achieved their remarkable success after the Cretaceous–Paleogene extinction event. Using a high-dimensional geometric morphometric approach, we quantified the shape of the skull in unprecedented detail across 354 extant and 37 extinct avian and non-avian dinosaurs. Comparative analyses reveal fundamental differences in how skull shape evolved in birds and non-avian dinosaurs. We find that the overall skull shape evolved faster in non-avian dinosaurs than in birds across all regions of the cranium. In birds, the anterior rostrum is the most rapidly evolving skull region, whereas more posterior regions—such as the parietal, squamosal, and quadrate—exhibited high rates in non-avian dinosaurs. These fast-evolving elements in dinosaurs are strongly associated with feeding biomechanics, forming the jaw joint and supporting the jaw adductor muscles. Rapid pulses of skull evolution coincide with changes to food acquisition strategies and diets, as well as the proliferation of bony skull ornaments. In contrast to the appendicular skeleton, which has been shown to evolve more rapidly in birds, avian cranial morphology is characterised by a striking deceleration in morphological evolution relative to non-avian dinosaurs. These results may be due to the reorganisation of skull structure in birds—including loss of a separate postorbital bone in adults and the emergence of new trade-offs with development and neurosensory demands. Taken together, the remarkable cranial shape diversity in birds was not a product of accelerated evolution from their non-avian relatives, despite their frequent portrayal as an icon of adaptive radiations

    Variation, variability, and the origin of the avian endocranium:Insights from the anatomy of alioramus altai (theropoda: Tyrannosauroidea)

    Get PDF
    The internal braincase anatomy of the holotype of Alioramus altai, a relatively small-bodied tyrannosauroid from the Late Cretaceous of Mongolia, was studied using high-resolution computed tomography. A number of derived characters strengthen the diagnosis of this taxon as both a tyrannosauroid and a unique, new species (e.g., endocranial position of the gasserian ganglion, internal ramification of the facial nerve). Also present are features intermediate between the basal theropod and avialan conditions that optimize as the ancestral condition for Coelurosauria--a diverse group of derived theropods that includes modern birds. The expression of several primitive theropod features as derived character states within Tyrannosauroidea establishes previously unrecognized evolutionary complexity and morphological plasticity at the base of Coelurosauria. It also demonstrates the critical role heterochrony may have played in driving patterns of endocranial variability within the group and potentially reveals stages in the evolution of neuroanatomical development that could not be inferred based solely on developmental observations of the major archosaurian crown clades. We discuss the integration of paleontology with variability studies, especially as applied to the nature of morphological transformations along the phylogenetically long branches that tend to separate the crown clades of major vertebrate groups

    Analysis of Epstein-Barr virus reservoirs in paired blood and breast cancer primary biopsy specimens by real time PCR

    Get PDF
    INTRODUCTION: Epstein-Barr virus (EBV) is present in over 90% of the world's population. This infection is considered benign, even though in limited cases EBV is associated with infectious and neoplastic conditions. Over the past decade, the EBV association with breast cancer has been constantly debated. Adding to this clinical and biological uncertainty, different techniques gave contradictory results for the presence of EBV in breast carcinoma specimens. In this study, minor groove binding (MGB)-TaqMan real time PCR was used to detect the presence of EBV DNA in both peripheral blood and tumor samples of selected patients. METHODS: Peripheral blood and breast carcinoma specimens from 24 patients were collected. DNA was extracted and then amplified by MGB-TaqMan real time PCR. RESULTS: Of 24 breast tumor specimens, 11 (46%) were positive for EBV DNA. Of these 11 breast tumor specimens, 7 (64%) were also positive for EBV DNA in the peripheral blood, while 4 (36%) were positive for EBV DNA in the tumor, but negative in the blood. CONCLUSION: EBV was found at extremely low levels, with a mean of 0.00004 EBV genomes per cell (range 0.00014 to 0.00001 EBV genomes per cell). Furthermore, our finding of the presence of EBV in the tumor specimens coupled to the absence of detection of EBV genomic DNA in the peripheral blood is consistent with the epithelial nature of the virus. Because of the low levels of viral DNA in tumor tissue, further studies are needed to assess the biological input of EBV in breast cancer

    Tempo and Pattern of Avian Brain Size Evolution

    Get PDF
    Relative brain sizes in birds can rival those of primates, but large-scale patterns and drivers of avian brain evolution remain elusive. Here, we explore the evolution of the fundamental brain-body scaling relationship across the origin and evolution of birds. Using a comprehensive dataset sampling> 2,000 modern birds, fossil birds, and theropod dinosaurs, we infer patterns of brain-body co-variation in deep time. Our study confirms that no significant increase in relative brain size accompanied the trend toward miniaturization or evolution of flight during the theropod-bird transition. Critically, however, theropods and basal birds show weaker integration between brain size and body size, allowing for rapid changes in the brain-body relationship that set the stage for dramatic shifts in early crown birds. We infer that major shifts occurred rapidly in the aftermath of the Cretaceous-Paleogene mass extinction within Neoaves, in which multiple clades achieved higher relative brain sizes because of a reduction in body size. Parrots and corvids achieved the largest brains observed in birds via markedly different patterns. Parrots primarily reduced their body size, whereas corvids increased body and brain size simultaneously (with rates of brain size evolution outpacing rates of body size evolution). Collectively, these patterns suggest that an early adaptive radiation in brain size laid the foundation for subsequent selection and stabilization

    Vertebral Pneumaticity in the Ornithomimosaur Archaeornithomimus (Dinosauria: Theropoda) Revealed by Computed Tomography Imaging and Reappraisal of Axial Pneumaticity in Ornithomimosauria

    Get PDF
    Among extant vertebrates, pneumatization of postcranial bones is unique to birds, with few known exceptions in other groups. Through reduction in bone mass, this feature is thought to benefit flight capacity in modern birds, but its prevalence in non-avian dinosaurs of variable sizes has generated competing hypotheses on the initial adaptive significance of postcranial pneumaticity. To better understand the evolutionary history of postcranial pneumaticity, studies have surveyed its distribution among non-avian dinosaurs. Nevertheless, the degree of pneumaticity in the basal coelurosaurian group Ornithomimosauria remains poorly known, despite their potential to greatly enhance our understanding of the early evolution of pneumatic bones along the lineage leading to birds. Historically, the identification of postcranial pneumaticity in non-avian dinosaurs has been based on examination of external morphology, and few studies thus far have focused on the internal architecture of pneumatic structures inside the bones. Here, we describe the vertebral pneumaticity of the ornithomimosaur Archaeornithomimus with the aid of X-ray computed tomography (CT) imaging. Complementary examination of external and internal osteology reveals (1) highly pneumatized cervical vertebrae with an elaborate configuration of interconnected chambers within the neural arch and the centrum; (2) anterior dorsal vertebrae with pneumatic chambers inside the neural arch; (3) apneumatic sacral vertebrae; and (4) a subset of proximal caudal vertebrae with limited pneumatic invasion into the neural arch. Comparisons with other theropod dinosaurs suggest that ornithomimosaurs primitively exhibited a plesiomorphic theropod condition for axial pneumaticity that was extended among later taxa, such as Archaeornithomimus and large bodied Deinocheirus. This finding corroborates the notion that evolutionary increases in vertebral pneumaticity occurred in parallel among independent lineages of bird-line archosaurs. Beyond providing a comprehensive view of vertebral pneumaticity in a non-avian coelurosaur, this study demonstrates the utility and need of CT imaging for further clarifying the early evolutionary history of postcranial pneumaticity

    FORUM FORUM FORUM The dodo and the tambalacoque tree: an obligate mutualism reconsidered

    No full text
    FORUM is intended for new ideas or new ways of interpreting existing information. It provides a chance for suggesting hypotheses and for challenging current thinking on ecological issues. A lighter prose, designed to attract readers, will be permitted. Formal research reports, albeit short, will not be accepted, and all contributions should be concise with a relatively short list of references. A summary is not required. The dodo and the tambalacoque tree: an obligate mutualism reconsidered The obligate mutualism hypothesis The dodo/tambalacoque obligate mutualism hypothesis was based on two premises: 1) that abrasion of tambalacoque seeds in birds' gizzards allowed germination, and 2) that no seeds have germinated since the dodo's demise 300 years ago. Both of these premises appear to be erroneous. Temple (1977) germinated 3 of 10 seeds that survived passage through turkey guts and argued that these were the first tambalacoque seeds to germinate since the dodo's extinction. This germination experiment suffered from a very low sample size and the lack of a control; Temple assumed no germination of cleaned, unabraded seeds. The tambalacoque fruit, These examples call into question the implicit assumption in the hypothesized obligate mutualism between the dodo and the tambalacoque that there is a simple tradeoff between the thickness of a seed's protective covering and its ability to germinate. Summary The dodo/tambalacoque obligate mutualism notion is not supported by the evidence. Reports of 1) germination of unabraded seeds in which the seed coat ruptures along a natural zone of weakness, and 2) living trees less than 300 years old, undermine the hypothesis that tambalacoque seeds required abrasion in a dodo's gizzard before they could germinate. It is likely that the tambalacoque evolved a thick, tough seed coat in response to consumption by its dispersers, but there is no evidence that the seeds require abrasion before they can germinate. Gut treatment may influence the rate of tambalacoque seed germination, but there is no sound evidence for this. Extinct frugivores were no doubt critical in cleaning and dispersing tambalacoque and other endemic Mauritian forest tree seeds. We emphasize that several endemic primary forest trees of Mauritius no

    Transfer of complex skill learning from virtual to real rowing

    Get PDF
    Simulators are commonly used to train complex tasks. In particular, simulators are applied to train dangerous tasks, to save costs, and to investigate the impact of different factors on task performance. However, in most cases, the transfer of simulator training to the real task has not been investigated. Without a proof for successful skill transfer, simulators might not be helpful at all or even counter-productive for learning the real task. In this paper, the skill transfer of complex technical aspects trained on a scull rowing simulator to sculling on water was investigated. We assume if a simulator provides high fidelity rendering of the interactions with the environment even without augmented feedback, training on such a realistic simulator would allow similar skill gains as training in the real environment. These learned skills were expected to transfer to the real environment. Two groups of four recreational rowers participated. One group trained on water, the other group trained on a simulator. Within two weeks, both groups performed four training sessions with the same licensed rowing trainer. The development in performance was assessed by quantitative biomechanical performance measures and by a qualitative video evaluation of an independent, blinded trainer. In general, both groups could improve their performance on water. The used biomechanical measures seem to allow only a limited insight into the rowers' development, while the independent trainer could also rate the rowers' overall impression. The simulator quality and naturalism was confirmed by the participants in a questionnaire. In conclusion, realistic simulator training fostered skill gains to a similar extent as training in the real environment and enabled skill transfer to the real environment. In combination with augmented feedback, simulator training can be further exploited to foster motor learning even to a higher extent, which is subject to future work
    • …
    corecore