4,160 research outputs found

    Comparing webometric with web-independent rankings: a case study with German universities

    Get PDF
    In this paper we examine if hyperlink-based (webometric) indicators can be used to rank academic websites. Therefore we analyzed the interlinking structure of German university websites and compared our simple hyperlink-based ranking with official and web-independent rankings of universities. We found that link impact could not easily be seen as a prestige factor for universities.Comment: 3 pages, ACM Web Science 201

    Standing on Shaky Ground: Americans' Experiences With Economic Insecurity

    Get PDF
    Based on 2009 Surveys of Economic Risk Perceptions and Insecurity, examines Americans' experience of economic insecurity, such as frequency and duration, buffers against hardship, and concerns by income, family structure, race/ethnicity, and education

    Probabilistic Numerics and Uncertainty in Computations

    Full text link
    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data has led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimisers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.Comment: Author Generated Postprint. 17 pages, 4 Figures, 1 Tabl

    ASPECT: A spectra clustering tool for exploration of large spectral surveys

    Full text link
    We present the novel, semi-automated clustering tool ASPECT for analysing voluminous archives of spectra. The heart of the program is a neural network in form of Kohonen's self-organizing map. The resulting map is designed as an icon map suitable for the inspection by eye. The visual analysis is supported by the option to blend in individual object properties such as redshift, apparent magnitude, or signal-to-noise ratio. In addition, the package provides several tools for the selection of special spectral types, e.g. local difference maps which reflect the deviations of all spectra from one given input spectrum (real or artificial). ASPECT is able to produce a two-dimensional topological map of a huge number of spectra. The software package enables the user to browse and navigate through a huge data pool and helps him to gain an insight into underlying relationships between the spectra and other physical properties and to get the big picture of the entire data set. We demonstrate the capability of ASPECT by clustering the entire data pool of 0.6 million spectra from the Data Release 4 of the Sloan Digital Sky Survey (SDSS). To illustrate the results regarding quality and completeness we track objects from existing catalogues of quasars and carbon stars, respectively, and connect the SDSS spectra with morphological information from the GalaxyZoo project.Comment: 15 pages, 14 figures; accepted for publication in Astronomy and Astrophysic

    Coordinates and maps of the Apollo 17 landing site

    Get PDF
    We carried out an extensive cartographic analysis of the Apollo 17 landing site and determined and mapped positions of the astronauts, their equipment, and lunar landmarks with accuracies of better than ±1 m in most cases. To determine coordinates in a lunar body‐fixed coordinate frame, we applied least squares (2‐D) network adjustments to angular measurements made in astronaut imagery (Hasselblad frames). The measured angular networks were accurately tied to lunar landmarks provided by a 0.5 m/pixel, controlled Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) orthomosaic of the entire Taurus‐Littrow Valley. Furthermore, by applying triangulation on measurements made in Hasselblad frames providing stereo views, we were able to relate individual instruments of the Apollo Lunar Surface Experiment Package (ALSEP) to specific features captured in LROC imagery and, also, to determine coordinates of astronaut equipment or other surface features not captured in the orbital images, for example, the deployed geophones and Explosive Packages (EPs) of the Lunar Seismic Profiling Experiment (LSPE) or the Lunar Roving Vehicle (LRV) at major sampling stops. Our results were integrated into a new LROC NAC‐based Apollo 17 Traverse Map and also used to generate a series of large‐scale maps of all nine traverse stations and of the ALSEP area. In addition, we provide crater measurements, profiles of the navigated traverse paths, and improved ranges of the sources and receivers of the active seismic experiment LSPE

    A critical review of resource recovery from municipal wastewater treatment plants : market supply potentials, technologies and bottlenecks

    Get PDF
    In recent decades, academia has elaborated a wide range of technological solutions to recover water, energy, fertiliser and other products from municipal wastewater treatment plants. Drivers for this work range from low resource recovery potential and cost effectiveness, to the high energy demands and large environmental footprints of current treatment-plant designs. However, only a few technologies have been implemented and a shift from wastewater treatment plants towards water resource facilities still seems far away. This critical review aims to inform decision-makers in water management utilities about the vast technical possibilities and market supply potentials, as well as the bottlenecks, related to the design or redesign of a municipal wastewater treatment process from a resource recovery perspective. Information and data have been extracted from literature to provide a holistic overview of this growing research field. First, reviewed data is used to calculate the potential of 11 resources recoverable from municipal wastewater treatment plants to supply national resource consumption. Depending on the resource, the supply potential may vary greatly. Second, resource recovery technologies investigated in academia are reviewed comprehensively and critically. The third section of the review identifies nine non-technical bottlenecks mentioned in literature that have to be overcome to successfully implement these technologies into wastewater treatment process designs. The bottlenecks are related to economics and value chain development, environment and health, and society and policy issues. Considering market potentials, technological innovations, and addressing potential bottlenecks early in the planning and process design phase, may facilitate the design and integration of water resource facilities and contribute to more circular urban water management practices

    Requirements for Information Extraction for Knowledge Management

    Get PDF
    Knowledge Management (KM) systems inherently suffer from the knowledge acquisition bottleneck - the difficulty of modeling and formalizing knowledge relevant for specific domains. A potential solution to this problem is Information Extraction (IE) technology. However, IE was originally developed for database population and there is a mismatch between what is required to successfully perform KM and what current IE technology provides. In this paper we begin to address this issue by outlining requirements for IE based KM
    • 

    corecore