480 research outputs found

    Ontogeny of kainate-induced gamma oscillations in the rat CA3 hippocampus in vitro

    Get PDF
    International audienceGABAergic inhibition, which is instrumental in the generation of hippocampal gamma oscillations, undergoes significant changes during development. However, the development of hippocampal gamma oscillations remains largely unknown. Here, we explored the developmental features of kainate-induced oscillations (KA-Os) in CA3 region of rat hippocampal slices. Up to postnatal day P5, the bath application of kainate failed to evoke any detectable oscillations. KA-Os emerged by the end of the first postnatal week; these were initially weak, slow (20-25 Hz, beta range) and were poorly synchronized with CA3 units and synaptic currents. Local field potential (LFP) power, synchronization of units and frequency of KA-Os increased during the second postnatal week to attain gamma (30-40 Hz) frequency by P15-21. Both beta and gamma KA-Os are characterized by alternating sinks and sources in the pyramidal cell layer, likely generated by summation of the action potential associated currents and GABAergic synaptic currents, respectively. Blockade of GABA(A) receptors with gabazine completely suppressed KA-Os at all ages indicating that GABAergic mechanisms are instrumental in their generation. Bumetanide, a NKCC1 chloride co-transporter antagonist which renders GABAergic responses inhibitory in the immature hippocampal neurons, failed to induce KA-Os at P2-4 indicating that the absence of KA-Os in neonates is not due to depolarizing actions of GABA. The linear developmental profile, electrographic features and pharmacological properties indicate that CA3 hippocampal beta and gamma KA-Os are fundamentally similar in their generative mechanisms and their delayed onset and developmental changes likely reflect the development of perisomatic GABAergic inhibition

    The Role of GLUK5-Containing Kainate Receptors in Entorhinal Cortex Gamma Frequency Oscillations

    Get PDF
    Using in vitro brain slices of hippocampus and cortex, neuronal oscillations in the frequency range of 30–80 Hz (gamma frequency oscillations) can be induced by a number of pharmacological manipulations. The most routinely used is the bath application of the broad-spectrum glutamate receptor agonist, kainic acid. In the hippocampus, work using transgenic kainate receptor knockout mice have revealed information about the specific subunit composition of the kainate receptor implicated in the generation and maintenance of the gamma frequency oscillation. However, there is a paucity of such detail regarding gamma frequency oscillation in the cortex. Using specific pharmacological agonists and antagonists for the kainate receptor, we have set out to examine the contribution of kainate receptor subtypes to gamma frequency oscillation in the entorhinal cortex. The findings presented demonstrate that in contrast to the hippocampus, kainate receptors containing the GLUK5 subunit are critically important for the generation and maintenance of gamma frequency oscillation in the entorhinal cortex. Future work will concentrate on determining the exact nature of the cellular expression of kainate receptors in the entorhinal cortex

    The Role of GLUK5-Containing Kainate Receptors in Entorhinal Cortex Gamma Frequency Oscillations

    Get PDF
    Using in vitro brain slices of hippocampus and cortex, neuronal oscillations in the frequency range of 30–80 Hz (gamma frequency oscillations) can be induced by a number of pharmacological manipulations. The most routinely used is the bath application of the broad-spectrum glutamate receptor agonist, kainic acid. In the hippocampus, work using transgenic kainate receptor knockout mice have revealed information about the specific subunit composition of the kainate receptor implicated in the generation and maintenance of the gamma frequency oscillation. However, there is a paucity of such detail regarding gamma frequency oscillation in the cortex. Using specific pharmacological agonists and antagonists for the kainate receptor, we have set out to examine the contribution of kainate receptor subtypes to gamma frequency oscillation in the entorhinal cortex. The findings presented demonstrate that in contrast to the hippocampus, kainate receptors containing the GLUK5 subunit are critically important for the generation and maintenance of gamma frequency oscillation in the entorhinal cortex. Future work will concentrate on determining the exact nature of the cellular expression of kainate receptors in the entorhinal cortex

    Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX): Comparing multi-electrode recordings from simulated and biological mammalian cortical tissue

    Get PDF
    Local field potentials (LFPs) sampled with extracellular electrodes are frequently used as a measure of population neuronal activity. However, relating such measurements to underlying neuronal behaviour and connectivity is non-trivial. To help study this link, we developed the Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX). We first identified a reduced neuron model that retained the spatial and frequency filtering characteristics of extracellular potentials from neocortical neurons. We then developed VERTEX as an easy-to-use Matlab tool for simulating LFPs from large populations (>100 000 neurons). A VERTEX-based simulation successfully reproduced features of the LFPs from an in vitro multi-electrode array recording of macaque neocortical tissue. Our model, with virtual electrodes placed anywhere in 3D, allows direct comparisons with the in vitro recording setup. We envisage that VERTEX will stimulate experimentalists, clinicians, and computational neuroscientists to use models to understand the mechanisms underlying measured brain dynamics in health and disease.Comment: appears in Brain Struct Funct 201

    Can in vitro studies aid in the development and use of antiseizure therapies? A report of the ILAE/AES Joint Translational Task Force

    Get PDF
    In vitro preparations (defined here as cultured cells, brain slices, and isolated whole brains) offer a variety of approaches to modeling various aspects of seizures and epilepsy. Such models are particularly amenable to the application of anti-seizure compounds, and consequently are a valuable tool to screen the mechanisms of epileptiform activity, mode of action of known anti-seizure medications (ASMs), and the potential efficacy of putative new anti-seizure compounds. Despite these applications, all disease models are a simplification of reality and are therefore subject to limitations. In this review, we summarize the main types of in vitro models that can be used in epilepsy research, describing key methodologies as well as notable advantages and disadvantages of each. We argue that a well-designed battery of in vitro models can form an effective and potentially high-throughput screening platform to predict the clinical usefulness of ASMs, and that in vitro models are particularly useful for interrogating mechanisms of ASMs. To conclude, we offer several key recommendations that maximize the potential value of in vitro models in ASM screening. This includes the use of multiple in vitro tests that can complement each other, carefully combined with in vivo studies, the use of tissues from chronically epileptic (rather than naïve wild-type) animals, and the integration of human cell/tissue-derived preparations

    The Grizzly, September 8, 1989

    Get PDF
    Hudson Gets $ Flowing • Earth Day Seed Planted • French Studies Papa\u27s Notes • Lopez Lures Listeners • Kruse Spot to Dawleys House • Presidential Candidates • Victory at GB Classic • Captains Lead Attack • Gros Sets Goals • Quest Continues • V-ball: Ichiban! • Coaches Added • Optimistic Lady Bears Start Season • Beaches No Bumshttps://digitalcommons.ursinus.edu/grizzlynews/1239/thumbnail.jp

    Decay-accelerating factor expression in the rat kidney is restricted to the apical surface of podocytes

    Get PDF
    Decay-accelerating factor expression in the rat kidney is restricted to the apical surface of podocytes.BackgroundDecay-accelerating factor (DAF) has inhibitory activity toward complement C3 and C5 convertases. DAF is present in human glomeruli and on cultured human glomerular visceral epithelial cells (GEC). We studied the distribution and function of rat DAF.MethodsFunction-neutralizing antibodies (Abs) were raised against DAF. The distribution of DAF in vivo was determined by immunoelectron microscopy. Functional studies were performed in cultured GEC and following IV injection of anti-DAF Abs into rats.ResultsDAF was present exclusively on the apical surfaces of GEC, and was not present on the basal surfaces of GEC, nor other glomerular or kidney cells. DAF was functionally active on cultured GEC, and served to limit complement activation in concert with CD59, an inhibitor of C5b-9 formation. Upon injection into normal rats, anti-DAF F(ab′)2 Abs bound to GEC in vivo, yet there was no evidence for complement activation and animals did not develop abnormal albuminuria. Anti-megalin complement-activating IgG Abs were “planted” on GEC, which activated complement as evidenced by the presence of C3d on GEC. Attempts to inhibit DAF function with anti-DAF Abs did not affect the quantity of complement activation by these anti-megalin Abs, nor did it lead to development of abnormal albuminuria. In contrast, in the puromycin aminonucleoside model of GEC injury and proteinuria, anti-DAF Abs slowed the recovery from renal failure that occurs in this model.ConclusionIn cultured rat GEC, DAF is an effective complement regulator. In vivo, DAF is present on GEC apical surfaces. Yet, it appears that DAF is not essential to prevent complement activation from occurring under normal circumstances and in those cases in which complement-activating Abs are present on the basal surfaces of GEC in vivo. However, in proteinuric conditions, DAF appears to be protective to GEC

    Epilepsy in adults with mitochondrial disease: A cohort study.

    Get PDF
    OBJECTIVE: The aim of this work was to determine the prevalence and progression of epilepsy in adult patients with mitochondrial disease. METHODS: We prospectively recruited a cohort of 182 consecutive adult patients attending a specialized mitochondrial disease clinic in Newcastle upon Tyne between January 1, 2005 and January 1, 2008. We then followed this cohort over a 7-year period, recording primary outcome measures of occurrence of first seizure, status epilepticus, stroke-like episode, and death. RESULTS: Overall prevalence of epilepsy in the cohort was 23.1%. Mean age of epilepsy onset was 29.4 years. Prevalence varied widely between genotypes, with several genotypes having no cases of epilepsy, a prevalence of 34.9% in the most common genotype (m.3243A>G mutation), and 92.3% in the m.8344A>G mutation. Among the cohort as a whole, focal seizures, with or without progression to bilateral convulsive seizures, was the most common seizure type. Conversely, all of the patients with the m.8344A>G mutation and epilepsy experienced myoclonic seizures. Patients with the m.3243A>G mutation remain at high risk of developing stroke-like episodes (1.16% per year). However, although the standardized mortality ratio for the entire cohort was high (2.86), this ratio did not differ significantly between patients with epilepsy (2.96) and those without (2.83). INTERPRETATION: Epilepsy is a common manifestation of mitochondrial disease. It develops early in the disease and, in the case of the m.3243A>G mutation, often presents in the context of a stroke-like episode or status epilepticus. However, epilepsy does not itself appear to contribute to the increased mortality in mitochondrial disease
    corecore