208 research outputs found

    COVID-19 has emphasised the importance of the local state – but how to solve a problem like local government funding?

    Get PDF
    The funding resilience of English local authorities has been a concern for some time, but COVID-19 has thrown such concerns into sharper relief, write Mark Sandford and Kevin Muldoon-Smith

    Grasping the nettle: the central–local constraints on local government funding in England

    Get PDF
    In England, the traditional method of central government redistribution and equalization between locations has been replaced with a greater emphasis on self-sufficiency and entrepreneurism. English local government now faces existential funding questions – a situation that is repeated around the world as the public sector manages the fallout from the Covid-19 pandemic. Financialization has figured large in the study of entrepreneurial behaviour. However, in England, legal and procedural constraints have driven authorities to seek revenue funding from other sources, principally seeking additional property-related revenues. In response, this article presents a novel typology of local government funding sources and offers an original analysis of their implications for local authorities’ role. The empirical findings show that the buoyancy and quantum of many funding sources are constrained by prior evolution of location and central–local relations: they are not automatic routes to financialization. Conceptually, these findings reveal that methods of financialization, and the local government funding system within which they typically sit, are as likely to be constrained by the evolution and techniques of governance as they are accelerated by it. International debates around financialization, and wider concerns of how locations develop, would benefit from this account of the often-hidden nature and agency of local government funding systems

    Monotonic properties of the shift and penetration factors

    Full text link
    We study derivatives of the shift and penetration factors of collision theory with respect to energy, angular momentum, and charge. Definitive results for the signs of these derivatives are found for the repulsive Coulomb case. In particular, we find that the derivative of the shift factor with respect to energy is positive for the repulsive Coulomb case, a long anticipated but heretofore unproven result. These results are closely connected to the properties of the sum of squares of the regular and irregular Coulomb functions; we also present investigations of this quantity.Comment: 13 pages, 1 figur

    Palladium(II)-Catalysed Aminocarbonylation of Terminal Alkynes for the Synthesis of 2-Ynamides: Addressing the Challenges of Solvents and Gas Mixtures

    Get PDF
    2‐Ynamides can be synthesised through Pd(II) catalysed oxidative carbonylation, utilising low catalyst loadings. A variety of alkynes and amines can be used to afford 2‐ynamides in high yields, whilst overcoming the drawbacks associated with previous oxidative methods, which rely on dangerous solvents and gas mixtures. The use of [NBu(4)]I allows the utilisation of the industrially recommended solvent ethyl acetate. O(2) can be used as the terminal oxidant, and the catalyst can operate under safer conditions with low O(2) concentrations

    Variability of the innate immune response is globally constrained by transcriptional bursting

    Get PDF
    Transcription of almost all mammalian genes occurs in stochastic bursts, however the fundamental control mechanisms that allow appropriate single-cell responses remain unresolved. Here we utilise single cell genomics data and stochastic models of transcription to perform global analysis of the toll-like receptor (TLR)-induced gene expression variability. Based on analysis of more than 2000 TLR-response genes across multiple experimental conditions we demonstrate that the single-cell, gene-by-gene expression variability can be empirically described by a linear function of the population mean. We show that response heterogeneity of individual genes can be characterised by the slope of the mean-variance line, which captures how cells respond to stimulus and provides insight into evolutionary differences between species. We further demonstrate that linear relationships theoretically determine the underlying transcriptional bursting kinetics, revealing different regulatory modes of TLR response heterogeneity. Stochastic modelling of temporal scRNA-seq count distributions demonstrates that increased response variability is associated with larger and more frequent transcriptional bursts, which emerge via increased complexity of transcriptional regulatory networks between genes and different species. Overall, we provide a methodology relying on inference of empirical mean-variance relationships from single cell data and new insights into control of innate immune response variability

    Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building.

    Get PDF
    A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data

    Accuracy of In Vivo Multimodal Optical Imaging for Detection of Oral Neoplasia

    Get PDF
    If detected early, oral cancer is eminently curable. However, survival rates for oral cancer patients remain low, largely due to late-stage diagnosis and subsequent difficulty of treatment. To improve clinicians ability to detect early disease and to treat advanced cancers, we developed a multimodal optical imaging system (MMIS) to evaluate tissue in situ, at macroscopic and microscopic scales. The MMIS was used to measure 100 anatomic sites in 30 patients, correctly classifying 98% of pathologically confirmed normal tissue sites, and 95% of sites graded as moderate dysplasia, severe dysplasia, or cancer. When used alone, MMIS classification accuracy was 35% for sites determined by pathology as mild dysplasia. However, MMIS measurements correlated with expression of candidate molecular markers in 87% of sites with mild dysplasia. These findings support the ability of noninvasive multimodal optical imaging to accurately identify neoplastic tissue and premalignant lesions. This in turn may have considerable impact on detection and treatment of patients with oral cancer and other epithelial malignancies

    A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging

    Get PDF
    BACKGROUND: Early detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging. METHODS: The fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine. FINDINGS: The fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time. CONCLUSION: Our results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings
    • 

    corecore