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Transcription of almost all mammalian genes occurs in stochastic bursts, however
the fundamental control mechanisms that allow appropriate single-cell responses
remain unresolved. Here we utilise single cell genomics data and stochastic
models of transcription to perform global analysis of the toll-like receptor
(TLR)-induced gene expression variability. Based on analysis of more than
2000 TLR-response genes across multiple experimental conditions we
demonstrate that the single-cell, gene-by-gene expression variability can be
empirically described by a linear function of the population mean. We show
that response heterogeneity of individual genes can be characterised by the slope
of the mean-variance line, which captures how cells respond to stimulus and
provides insight into evolutionary differences between species. We further
demonstrate that linear relationships theoretically determine the underlying
transcriptional bursting kinetics, revealing different regulatory modes of TLR
response heterogeneity. Stochastic modelling of temporal scRNA-seq count
distributions demonstrates that increased response variability is associated with
larger and more frequent transcriptional bursts, which emerge via increased
complexity of transcriptional regulatory networks between genes and different
species. Overall, we provide a methodology relying on inference of empirical
mean-variance relationships from single cell data and new insights into control of
innate immune response variability.
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Introduction

Transcription of almost all mammalian genes occurs in bursts, during brief and random
periods of gene activity. The patterns of temporal mRNA production in a single cell, and the
overall mRNA (and protein) distribution in cellular populations, are controlled by
transcriptional bursting, namely, via the modulation of burst size and burst frequency (Raj
et al., 2006; Suter et al., 2011; Molina et al., 2013). The innate and adaptive immune responses
exhibit extreme variability at the single cell level, in comparison to other tissue systems (Shalek
et al., 2013; Shalek et al., 2014; Hagai et al., 2018), where only subsets of cells produce specific
effector molecules, and thus are able to respond to pathogen (Avraham et al., 2015; Iakovlev
et al., 2021). This apparent level of variability poses a fundamental systems biology question;
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how do robust immune responses emerge from this heterogeneous
transcriptional bursting process?

Recent advances have demonstrated key insights into regulation
of transcriptional bursting. In general, the bursting kinetics are gene-
specific and subject to regulatory control via cellular signalling events
(Suter et al., 2011; Larson et al., 2013; Megaridis et al., 2018; Wong
et al., 2018; Bass et al., 2021) as well as genome architecture and
promoter sequences (Dar et al., 2012; Dey et al., 2015; Zoller et al.,
2015; Hagai et al., 2018; Ochiai et al., 2020; Einarsson et al., 2022). For
example, core promoters control burst sizes, while enhancer elements
modulate burst frequency to define cell-type specific (Larsson et al.,
2019) or circadian gene expression outputs (Nicolas et al., 2018).
Coordinated gene activity has also been shown to regulate mRNA
outputs as a function of spatial position during development (Zoller
et al., 2018; Hoppe et al., 2020; Wang et al., 2020) as well as temporal
immune responses (Robles-Rebollo et al., 2022). The resulting cell-to-
cell variability is a consequence of the stochastic processes governing
signalling and transcription (Elowitz et al., 2002), but also reflects
extrinsic differences between individual cells (Spencer et al., 2009;
Adamson et al., 2016; Phillips et al., 2019; Shaffer et al., 2020) or
variability of the pathogen in the context of the innate immune
response (Avraham et al., 2015). With individual genes exhibiting
different levels of stimuli-induced heterogeneity, we are still lacking
general understanding of how transcription is regulated at the single
cell level.

Toll-like (TLR) receptor signalling constitutes one of the
fundamental, evolutionarily conserved innate immune defence
mechanisms against foreign threats (Gay et al., 2014; Bryant et al.,
2015), yet exhibits substantial cell-to-cell variability (Shalek et al., 2013;
Shalek et al., 2014; Lu et al., 2015; Xue et al., 2015; Hagai et al., 2018).
We recently demonstrated that this overall TLR response to
stimulation (or in general perturbation) is constrained through
gene-specific transcriptional bursting kinetics (Bagnall et al., 2020).
By utilising single molecule Fluorescent in situ Hybridisation
(smFISH), we established that the overall mRNA variability is
linearly constrained by the mean mRNA response across a range of
related stimuli. Variance (and in fact higher moments) of the mRNA
distributions have been also shown to be constrained by the mean
response in the developing embryo (Zoller et al., 2018). These analyses
suggest that complex transcriptional regulation at a single cell level may
be globally characterised by mean-variance relationships of gene-
specific mRNA outputs, providing new ways to characterise
response variability. While quantitative smFISH provides important
insights, this approach is often limited by the number of genes, which
can be investigated (Raj et al., 2008; Zenklusen et al., 2008; Larson et al.,
2013; Lee et al., 2014; Gomez-Schiavon et al., 2017; Bagnall et al., 2018;
Bagnall et al., 2020; Bass et al., 2021), therefore further analyses of
global gene expression patterns (Larsson et al., 2019; Ochiai et al., 2020)
are required to fully understand the underlying regulatory constraints.

Here we utilise scRNA-seq data on innate immune phagocytes
stimulated with common TLR ligands, lipopolysaccharides (LPS) of
Gram-negative bacteria upstream of TLR4 and viral-like double-
stranded RNA (PIC) for TLR3 (Hagai et al., 2018) to investigate
the control of single cell gene expression heterogeneity of the innate
immune responses. We analyse 2,338 TLR-response genes and
demonstrate that they globally follow empirical linear mean-
variance relationships, exhibiting a genome-wide spectrum of
response variability levels characterised by the slope of the

relationship. We show that linear relationships define different
modes of individual-gene response modulation with majority of
the genes undergoing frequency modulation to TLR stimulation.
Mathematical modelling of scRNA-seq count distributions using
dynamic stochastic telegraph models of transcription of varied
complexity levels, demonstrates that increased response variability
is associated with larger and more frequent transcriptional bursts,
which emerge via increased regulatory complexity. Finally, we show
that linear mean-variance relationships capture evolutionarily
differences in response variability across pig, rabbit, rat, and mouse
and predict transcriptional bursting modulation between species.
Overall, our data demonstrate the utility of empirical mean-
variance relationships in providing new insights into control of
transcriptional variability in the innate immune response.

Results

TLR-induced mRNA responses exhibit linear
mean-variance trends

To globally investigate the control of transcriptional bursting in
the TLR system relationships we used existing scRNA-seq data from
mouse phagocytes either untreated or stimulated with LPS and PIC
for 2, 4 and 6 h (Hagai et al., 2018). The dataset contains unique
molecular identifier (UMI) mRNA counts for 53,086 cells and
16,798 genes across 20 experimental conditions including
replicates, of which 2,338 genes were identified as TLR-
dependent (see Figure 1A for correlation of sample mean and
variance across all datasets, and Materials and Methods for data
processing). While in general, there is a nonlinear relation between
the variance and mean response, in agreement with other analyses
(Taniguchi et al., 2010; Dar et al., 2016), the relative variability in the
data (captured by a coefficient of variation, i.e., standard deviation
normalised by the mean) decreases as the level of response increases
(Supplementary Figure S1A). We previously showed that the gene-
specific variability can be defined by the slope of the mean-variance
relationship (Bagnall et al., 2020). To test this phenomenon globally,
for each of the 2,338 TLR-inducible genes, the sample mean (μ) and
variance (σ2) relationship was fitted using robust linear regression
(σ2 � αμ + α0), yielding 2,133 genes with a significant regression
slope (p-value < 0.05, Figure 1B). Of those, 1,551 (66% of all TLR-
inducible genes) genes, referred here as high confidence genes, were
characterised by coefficient of determination R2 > 0.6 (Figure 1C, see
also Supplementary Table S1 for list of genes and fitted
relationships). Overall, the distribution of fitted slopes across the
high confidence genes varied over 3 orders of magnitude, with
1,067 genes (69% of high confidence genes) characterised by slope
α > 1 and 627 (40%) α > 3, indicative of predominant non-
Poissonian transcription (where one would expect α = 1 and
α0 � 0) (Figure 1D). 61 genes (4%) were characterised by α >
5 and 28 (2%) by a α > 10, highlighting genes with the highest
level of expression variability (across a range of TRL responses,
Supplementary Figure S1B). Among the high variability genes (α >
5) we found C-C motif chemokine ligands (Ccl) 2, 3, 4, 5, 17; C-X-C
motif ligands (Cxcl) 9 and 10, as well as cytokines including
Interleukin 1 α (IL1a), IL1b, IL10, IL12b and Tumour Necrosis
Factor α (Tnfa) (see Figure 1E for individual gene fits). The most
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variable gene in the dataset was the immunoglobulin subunit Jchain
with α = 1,372 (Supplementary Figure S1B), substantially more than
the 2nd most variable Ccl5 (α = 72). While the range of the mRNA
output among high confidence genes varies over 3 orders of
magnitude (Supplementary Figure S1C), we found that LPS
induced more robust activation than PIC in terms of average
expression (Figure 1F). The range of the response significantly
correlated with the slope of mean-variance relationships across
the 1,551 confidence genes (Spearman’s rank correlation r = 0.47,
Supplementary Figure S1D). This suggests, that at least in part, the

slope of the relationship and thus the heterogeneity of individual
gene is related to the amplitude of the stimuli-induced response.

Patterns of transcriptional bursting
modulation underlie TLR response
heterogeneity

Having established the linear relationships relating the gene-
specific transcriptional variability to mean expression, we sought to

FIGURE 1
TLR-induced transcriptional variability is linearly constrained. (A). Overall variability in the scRNA-seq dataset (Hagai et al., 2018). Shown is the scatter
plot of the samplemean (μ) and variance (σ2) calculated for 2340 TLR-dependent genes across 20 experimental conditions. Data points corresponding to
Jchain, Ccl5 and Nfkbia highlighted in yellow, red, and green, respectively. Broken line indicates μ = σ2 line. (B). Schematic description of the fitting
protocol. (C). Histogram of coefficient of determination (R2) for 2,133 gene fits characterised by a significant regression slope (p-value < 0.05). R2 =
0.6 broken line corresponds to the high confidence gene cut-off. (D). Distribution of the fitted regression slopes for the 1,551 high confidence gene set.
Histogram of the fitted slopes shown on the left. Number of genes with different slope range shown on the right. (E). Fitted mean-variance relationships
for a subset of genes. Shown are the individual datapoints (LPS, PIC and unstimulated) as well as fitted regression line with a fitted equation (* denotes
statistically significant intercept, p-value < 0.05) and the coefficient of determination (R2). (F). Mean mRNA counts across treatments (LPS, PIC) and time
(0, 2, 4, 6 h) for the 1,551 high confidence genes.
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FIGURE 2
Mean-variance relationships constrain transcriptional bursting characteristics. (A). Theoretical burst size and frequency characteristics. (Left)
Simulated mean variance relationships with positive (in blue, α = 20, α0 = 100) and negative (in red, α = 20, α0 = −100) intercepts, respectively. (Middle &
Right) Derived burst size and frequency modulation schemes for corresponding parameter values calculated using moment estimators. A special case of
α = 20, α0 = 0 is shown in broken line. (B). Global modulation of transcriptional busting. Shown is the comparison between fitted mean-variance
relationship and derived theoretical burst size and frequency modulation schemes vs. experimental data. Shown is distribution of relative root mean
square error (RRMSE) of 1,551 high confidence genes (C). Modulation schemes forCd44, Pfn1, Eif6 and Cxcl10 genes. Shown is the comparison between
theoretical relationships based on fitted mean-variance relationships (in red) and corresponding estimates from data (open circles). Equations for fitted
mean-variance relationships highlighted in the top left panel, respectively.
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study global properties of transcriptional bursting underlying these
trends. We used moment estimators of the underlying scRNA-seq
count distributions to calculate bursting characteristics, such that
burst size bs = σ2/μ (i.e., the Fano factor) and burst frequency bf = μ/
bs (Nicolas et al., 2017). These estimators rely on the moments of the
mRNA distributions to quantify ‘burstiness’ as a departure
‘nonbursty’ Poissonian mRNA production, characterised by bs =
1 and bf =∞ (Raj et al., 2006; Suter et al., 2011; Nicolas et al., 2018;
Wong et al., 2018). Given the empirical linear constraint,
σ2 � αμ + α0, the burst size and burst frequency become
analytical functions of the mean mRNA expression such that bs
= α0/µ + α and bf = µ2/(α0+αμ) (Figure 2A). In a special case when α0
= 0, burst size is constant (independent of the mean expression µ)
and equal to the slope of the mean-variance line α, while the
frequency increases linearly with µ and is proportional to 1/α
(Bagnall et al., 2020). However, the overall behaviour does
depend on the intercept (see Supplementary Figure S1E for
sensitivity analyses); for α0>0, the burst frequency converges
monotonically to μ/α (i.e., the limiting case for α0 = 0), while the
burst size converges to α (from∞ at µ = 0) as the mean expression μ

increases (Figure 2A in blue). For α0<0 (Figure 2A, in red), the
relationship can only be defined for µ>|α0|/α, such that burst size
increases monotonically (and converges to α), while the burst
frequency has a local minimum for μ* = 2|α0|/α equal to 4|α0|/α

2,
eventually converging to the limiting case μ/α.

We calculated the theoretical bursting modulation schemes for
the 1,551 high confidence genes and compared these to the moment
estimators of the burst size and frequency from the data (Figure 2B).
We found that the average relative root mean square error (RRMSE,
see methods) of the mean-variance fit in relation to data was 0.07% ±
0.02%, where 1,431 genes had an error smaller than 0.1%. In
comparison, the average error for the burst size modulation was
0.08% ± 0.03% (with 1,281 genes having an error smaller than 0.1%),
while the average error for the burst frequency modulation was
0.07% ± 0.1% (with 1,389 genes having an error smaller than 0.1%).
Given their empirical nature, the predicted theoretical trends are in
good agreement with the changes of burst size and frequency
observed in the data. Profilin 1 (Pnf1) and Cd44 are example
genes characterised by intercept α0<0, while the genes encoding
eukaryotic translation initiation factor 6 (Eif6) and Cxcl10 had α0>0
(Figure 2C). Jchain is an example of a gene with a good mean-
variance fit, but one of the poorest fit in terms of bursting frequency,
which might be due to limited sample size and its profound
variability. Of the 1,551 high confidence genes, 430 genes had a
significant intercept (p-value < 0.05) in the regression fit, with
414 characterised by negative and 16 positive intercepts
(Supplementary Figure S1F). While intuitively zero intercept is
expected (i.e., no expression in untreated conditions), these in
part reflect the empirical nature of these trends and the limited
sample size, especially for those genes where α0 is small (in relation
to variance), for example, Cxcl10 (Figure 2C). However, many genes,
including Pnf1 and Eif6 exhibit substantial basal expression in
untreated cells (Bass et al., 2021), resulting in either elevated or
reduced variability (in relation to true zero) being captured via non-
zero intercept in the regression fit (Bagnall et al., 2020).

Gene-specific bursting exhibits different
modes of response modulation

The linear mean-variance relationships reflect the constrained
changes of burst size and burst frequency required to regulate
response variability as shown in their derived analytical functions
of the mean mRNA expression. To understand the modulation of
transcriptional bursting, we first calculated fold changes of burst
size vs. burst frequency across the range of mean expression
calculated for individual response genes (Figure 3A). We found
that 1,015 out of the 1,551 high confidence genes exhibit 2 times
more fold changes in burst frequency than burst size. This suggests
a predominant frequency modulation, in agreement with recent
analyses of LPS-induced macrophages (Robles-Rebollo et al.,
2022). However, we also found 48 genes exhibiting fold changes
in burst size 2 times more than burst frequency, while
389 exhibited comparable modulation of both burst size and
burst frequency. To study the transcriptional bursting
modulation more systematically, we derived an analytical
relationship between the burst size and frequency (independent
of the mean mRNA expression) based on the linear constrains
(Figure 3B). The general relationship is given by bf = α0/(bs(bs-α)),
where α0 can take positive or negative values. When α0>0, we have
an inverse relationship between the burst size and frequency, which
asymptotically approaches zero, as the burst size approaches
infinity. It is also worth mentioning that, in this case, the
function is undefined for values of burst size smaller than or
equal to α (Figure 3B, in blue), reflecting a biological limit of
burst size and frequency for genes following this modulation trend.
We found that 315 genes (out of the 1,551 high confidence genes)
exhibited such an inverse relationship, with all genes exhibiting
higher frequency than burst size modulation (see Figure 3C for
specific genes and Figure 3D and Supplementary Table S2 for
global analysis). For the case when α0<0, linear constrains define a
non-monotonic relationship between the burst size and frequency
on the interval (0,α) with a local minimum at bs* = α/2, and
frequency diverging to infinity as burst size tends towards α or is
close to 0 (Figure 3B, in red). From the case α0<0, three patterns of
bursting modulation can be distinguished; the burst frequency and
size exhibit either inverse relationship, where the frequency
increases and burst size decreases (for bs < bs*) or concurrent
increases (bs > bs*). In addition, we define a U-shape relationship
where the inverse or concurrent relationship is possible
(i.e., bs max> b*s and bs min < b*s , per gene), but changes occur only
close to the minimum of the function (such that bs ≈ bs*), unlike
other relationships. This mode allows greater burst size
modulation (in 218 of 767 genes) comparing to other modes
(19 genes, Figures 3C, D). We found that out of the 1,236 genes
characterised by α0<0, most genes (999) exhibited predominant
frequency modulation following either a U-shape or a concurrent
relationship. It is worth mentioning that all 7 genes confirming an
inverse trend showed predominant burst size modulation. Overall,
these analyses demonstrate different modes of the transcriptional
bursting modulation of TLR-stimulated genes, albeit with
predominant regulation via burst frequency.

Frontiers in Molecular Biosciences frontiersin.org05

Alachkar et al. 10.3389/fmolb.2023.1176107

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1176107


FIGURE 3
LPS-induced gene expression undergoes different modes of transcriptional bursting. (A). Relative changes of burst size and burst frequency. Shown
is the relative fold change of burst size and frequency calculated across the individual range of mean expression for 1,551 high confidence genes (in blue
circles). Identity line depicted in black, two-fold change highlighted in red. (B). Theoretical relationship between burst size and frequency. (Left) Simulated
mean variance relationships with positive (in blue, α = 20, α0 = 100) and negative (in red, α = 20, α0 = −100) intercepts, respectively. (Right) Burst size
and frequency modulation schemes for corresponding parameter values calculated using moment estimators. A special case of α = 20, α0 = 0 shown in
broken line. (C). Modulation of burst size and frequency across a range of individual genes. Shown are inverse relationship (α0 > 0) in blue aswell as inverse,
U-shape and concurrent relationships (α0 < 0). Relationship predicted from linear constraints in solid lines and corresponding estimates from
experimental data in open circles. U-shape numerically defined as maximum burst size value > α/2 andminimum burst size value < α/2 across conditions.
(D). Prevalence of different modulation schemes across 1,551 high confidence genes. Definition of the mode as in C, dominant modulation defined by
absolute difference in the burst size vs. frequency changes across the respective range of mean expression (as in A).
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FIGURE 4
TLR response variability is associated with regulatory complexity. (A). Schematic representation of the 2-state and 3-state models of transcription.
(B). Comparison between the fitted and measured mRNA counts distributions. Shown are cumulative probability distribution of data (in green) vs. the
corresponding 2-state and 3-state stochastic model fits (in red and blue, respectively) for representative condition for Eif6 (PIC, 4h, replicate 3) and Ccl2
(LPS, 2h, replicate 2) genes. (C). Analysis of transcriptional bursting across high coverage genes and conditions fitted by 2-state vs. 3-state models.
Shown is the comparison between best fit 2-state and 3-state models in terms of mean mRNA expression, variance, burst size and frequency from
experimental data. Best fit defined by AICbest model<0.5AIC2nd best (from Supplementary Figure S3B). Burst size and frequency calculated per condition
using moment estimators. Statistical significance assessed with Mann-Whitney test (** p-value < 0.01, **** p-value < 0.0001). (D). Relationship between
slope of the mean-variance relationship and fraction of 3-state model fits for high coverage genes. Fraction of 3-state model fits per gene defined by the
number of conditions with AIC3-state model<AIC2-state over all conditions per gene. Broken line indicates 0.5, r denotes Spearman correlation coefficient.
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Increased response variability is associated
with complex transcriptional regulation

The distribution of fitted regression slopes varying over 3 orders
of magnitude demonstrate a wide range of response variability
among individual TLR-induced genes (Figure 1D). While we
have demonstrated that individual genes exhibit different modes
of transcriptional bursting characteristics to regulate responses to
stimulation, we wanted to understand the control of variability in
the system more mechanistically. A well-established mathematical
description of mRNA production involves a 2-state telegraph model
(Figure 4A), where gene activity changes randomly between “off”
and “on” states, with mRNA transcription occurring in the “on”
state (Raj et al., 2006; Zenklusen et al., 2008; Suter et al., 2011;
Nicolas et al., 2018). The associated parameters are gene activity
rates (kon and koff) as well as rate of mRNA transcription (kt) and
degradation (kd) (Nicolas et al., 2018). Although the 2-state
telegraph model has been widely used in the past to model
mRNA count data, more complex structures are often required
to capture additional complexity associated with multiple regulatory
steps, combinatorial promoter cycling and transcriptional initiation
(Harper et al., 2011; Zoller et al., 2015). We previously showed that
heterogenous Il1β mRNA transcription requires more regulatory
steps than that of Tnfα (Bagnall et al., 2020). We therefore
hypothesised that TLR response variability is linked with the
complexity of the transcriptional regulation. To test this
hypothesis, we introduced a 3-state stochastic model, which
assumes sequential promoter activation between “off”,
“intermediate” and “on” states, equivalent to promoter cycling
(Harper et al., 2011; Zoller et al., 2015), with transcription
occurring in the “intermediate” (I) state as well as in the “on”
state, characterised by 5 transition rates (ton, toff, kon, koff and kc),
2 transcription rates (kti and kt), and a degradation rate kd
(Figure 4A).

We first used a profile likelihood approach (Vu et al., 2016;
Larsson et al., 2019) to fit the measured scRNA-seq count
distributions assuming steady state kinetics of the 2-state model
(the so called Beta-Poisson model) for the 1,551 high confidence
genes, each across 20 treatment datasets (Supplementary Table S3).
Values of kinetic parameters were inferred for 7,804 of
31,020 datasets (~25% across 1,519 genes), which in general
corresponded to genes characterised by larger expression, in
comparison to those that failed to fit (Supplementary Figure
S2A). The fitted parameter values (kon, koff and kt, expressed in
units per degradation half-life) varied over 3 orders of magnitude
across all genes and datasets (Supplementary Figure S2B). In general,
gene inactivation rates (koff) were greater than activation rates (kon)
(Supplementary Figure S2C), consistent with intermittent
transcriptional kinetics (Suter et al., 2011; Dar et al., 2012;
Larsson et al., 2019). While the Beta-Poisson model explicitly
assumes a steady-state (and does not make any assumptions
about mRNA half-life), we wanted to account for the underlying
dynamical stochastic processes and corresponding temporal mRNA
production and decay (Gomez-Schiavon et al., 2017). However, it
was not computationally feasible to fit all genes across all scRNA-seq
datasets, we therefore identified on a subset of 99 high confidence
genes for which at least 10 datasets were fitted using a Beta-Poisson
model (Supplementary Figure S2D). Of these, 96 had an existing

measurement of mRNA half-life (which is required for dynamical
model fitting) in LPS-stimulated bone marrow derived macrophages
(Hao and Baltimore, 2009; Kratochvill et al., 2011) or other cell
models (Maurer et al., 1999; Raghavan et al., 2002; Park et al., 2004;
Sharova et al., 2009; Kambara et al., 2014; Payne et al., 2014; Martin
et al., 2017; Zainol et al., 2019) (see Supplementary Table S3 for
specific values). The resulting 96 high coverage genes included 51 of
100 most variable genes (as defined by the fitted regression slope)
and 60 of 100 most expressed genes including chemokine family
Ccl5, Ccl4, Ccl3, Ccl2 as well as IL1b and TNFa (Supplementary
Figure S2D–F, see Supplementary Table S3 for a list of genes and
fitted relationships).

We used a genetic algorithm to fit dynamical 2-state and 3-state
stochastic models across 20 individual datasets (LPS and PIC
stimulation at 0, 2, 4, 6 h time-course across replicates) for the
96 high coverage genes (seeMaterial andMethods).We then applied
the Akaike information criterion (AIC) (Akaike, 1973)
incorporating the penalty for model complexity, to select the
simplest (i.e., best fit) model that accurately fitted the measured
mRNA distributions per condition, noting that the lower AIC value
corresponds to the better model fit. In general, we found that Beta-
Poisson model, the least constrained model, fitted better than
dynamical models (805 out of 1,210 conditions (i.e., treatment
and replicates) favoured Beta-Poisson model based on their AIC
values, Supplementary Figure S3A, B). The more constrained
dynamical 2-state model provided a best fit for 170 conditions,
while the 3-state model best captured 235 conditions (and 30 and 57,
respectively when using a more stringent criterion of two-fold AIC
change, Supplementary Figure S3B). When comparing 2-state with
3-state model directly and assuming a two-fold AIC change between
the twomodels, there were 141 out of 1,507 conditions that favoured
the 2-state model, while the opposite was true for 266 conditions (see
Supplementary Figure S3C for other thresholds). For example, 2-
state model recapitulated PIC-treated Eif6mRNA count distribution
(at 4 h) better than a 3-state model, as reflected by the AIC2-

state<AIC3-state, this to some extent reflects the fact that although
generally more accurate, the 3-state model is also more difficult to fit
by the genetic algorithm. In turn, the 3-state model better
recapitulated the LPS-treated Ccl2 distribution (at 2 h) spanning
almost over 3 orders of magnitudes (Figure 4B). The number of 2-
state-and 3-state model fits was not strongly related to the treatment,
time point or in fact biological replicates, although LPS had
155 conditions more fitted with 3-state than 2-state model
(Supplementary Figure S3D).

The 141 2-state model fits were characterised by kon = 0.02 ± 0.01
min-1 (half-time of 35 min) on average, and off rates averaging koff =
0.74 ± 0.25 min-1 (half-time of 1 min), with average transcription
rate kt = 1.23 ± 4.44 mRNA min-1, indicative of ‘bursty’ kinetics
(Supplementary Figure S4A). The ‘on’ rate showed significant
positive correlation with the variance of the corresponding count
distributions (r = 0.48), demonstrating that a faster ‘on’ switch
contributes towards increased response variability. The 266 3-state
model fits were also characterised by relatively slow average ‘on’ rates
(ton = 0.036 ± 0.13 min-1 and kon = 0.33 ± 0.32 min-1) in relation to
the ‘off’ rates (toff = 0.74 ± 0.26min-1, koff = 0.44 ± 0.36min-1 and kc =
0.50 ± 0.36 min-1, Supplementary Figure S4B). The mRNA count
variance was correlated positively with ton rate (i.e., transition to
intermediate state, r = 0.33) as well as with transcription rates in ‘on’
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FIGURE 5
Evolutionary control of TLR response variability. (A). Schematic representation of response variability during evolution for putative species A and (B).
Shown are mean variance relationships corresponding to slopes (α1 and α2 = kα1) and the predicted burst size (B) and frequency (F)modulation schemes
for corresponding parameter values calculated using moment estimators. (B). Histogram of the slope ratio k calculated for the 169 orthologue genes
across all pairwise comparisons between mouse, rat, rabbit and pig. k = max (α1,α2)/min (α1,α2), where α1 and α2 denote slopes of the fitted mean-
variance relationships for each pair of species per gene. (C). Modulation schemes for Cxcl10 and Cbx8 genes. Shown is the comparison between
theoretical relationships based on the fitted mean-variance relationships (in solid lines, colour-coded by species) and corresponding moment estimates
for burst size and frequency from experimental data (circles). (D). Analysis of burst size and frequency for divergent and non-divergent mouse and pig
TLR-response genes. Shown are box plots of average burst size and mean-normalized frequency per gene stratified into divergent (αmouse> 2αpig or
αpig>2αpig) and complementary non-divergent groups (31, 15 and 123 orthologue genes, respectively). Statistical significance assessed with a paired
Wilcoxon test (**** p-value < 0.0001, *** p-value < 0.001, ns not significant). (E). Change of variability between species is associated with regulatory

(Continued )
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and ‘intermediate’ states (r > 0.4). In comparison to the 2-state
model, the transcription rate in the ‘on’ state was significantly higher
(kt = 7.63 ± 13.05 mRNA min-1) indicative of larger burst sizes
(Supplementary Figure S4C, D).

We then asked if the level of variability is linked with the model
complexity. We found that scRNA-seq count distributions fitted
with the 3-state model were characterised by greater variability than
those corresponding to the 2-state model (see Figure 4C;
Supplementary Figure S4D for less stringent model selection
thresholds). In agreement, the 3-state-model fits were associated
with significantly larger burst size and lower burst frequency than
that of the 2-state model fits, consistent with more heterogenous
bursting kinetics across the relevant conditions. Finally, we analysed
model selection across individual high coverage genes rather than
corresponding conditions; we found the fraction of conditions
explained by one model changes between individual genes (e.g.,
3-state model fitted 3 out of 20 for Eif6, 10 out of 20 for Ccl5 and all
conditions for Vcam1 Figure 4D). Our interpretation of this is that
as the mRNA responses increase, a more complex regulatory
structure is required to capture the underlying distribution. We
found that, for the high coverage genes, the fraction of conditions
explained by the 3-state model correlated well (r = 0.56, p-value <
0.0001) with the slope of mean-variance relationship, and thus
response heterogeneity (Figure 4D). Overall, this demonstrates
that while increased heterogeneity involves larger and infrequent
bursts (in comparison to homogenous responses), this is underlined
by increased complexity of the transcriptional regulatory network.

Linear relationships capture evolutionary
changes of response variability

Previous work highlighted the relationship between
evolutionary response divergence of innate immune genes and
their cell-to-cell variability, with highly divergent genes exhibiting
more variability (Hagai et al., 2018). However, the changes in
patterns of transcriptional bursting during evolution is still
poorly understood. We proposed that by comparing the linear
mean-variance relationships across species, the variations in
transcriptional bursting patterns that develop through evolution
could be better understood. Specifically, if the evolutionary changes
in response variability can be captured by a fold-change k in the
slope of the relationship, then the increased variability is predicted to
be due to increased burst size and reduced burst frequency by a
factor k, respectively (Figure 5A).

The relationship between the mean and variance of the single
cell mRNA counts was studied in data for four mammalian species
from Hagai et al. (2018): mouse, rat, pig, and rabbit, in cells either
untreated or treated with LPS or PIC for 2, 4 and 6 h (see methods
and Supplementary Table S4 for species specific number of
conditions per gene ranging from 12 to 21). We found that from

the 2,338 LPS response genes, a subset of 218 genes with one-to-one
orthologues showed response to treatment in all four species
(Supplementary Figure S5A). 78% of fitted mean-variance
relationships for the 218 genes were characterised by R2 > 0.6,
including 102 genes in all four species and 169 in at least three
species. To characterise the divergence in response variability we
performed species pairwise comparison between the fitted
regression slopes of the 169 genes subset (Supplementary Table
S5). Out of this subset 21 genes including chemokines Ccl2, Ccl4,
Ccl5 and Cxcl10 (Figure 5B; Supplementary Figure S5B), had all
6 possible pairwise comparisons showing significant differences,
indicating divergence in TLR response variability between each of
the two species. 5 significant FDR values (difference in three out of
four species) were obtained for 49 genes including chemokines
Ccl20, Ccl3, MMP9 (Supplementary Figure S5B) and cytokines
Il1a, Il10 and Il27 indicating significant differences in response
variability. On the other hand, no significant differences were
obtained between any of the four slopes in 7 genes, including a
transcriptional repressor Chromobox Protein Homologue 8 (Cbx8,
Figure 5B). In agreement, a distribution of slope ratios calculated
across all pairs of species for the 169 genes (Figure 5C and
Supplementary Table S6) revealed 49 pairs with k > 5 and
258 pairs with k > 2, indicating substantial changes of the
response variability between species, including the chemokine
and cytokine genes. Conversely, 54% of slope ratios (549 out of
total 1,014 genes) were smaller than 1.5, indicative of conserved
variability. The inflammatory chemokines were shown previously to
rapidly evolve in mammals and other vertebrates with clear
differences in expression between closely related species (Nielsen
et al., 2005; Haygood et al., 2010). Moreover, gene duplication of the
CC chemokine ligands can result in different copy numbers of these
genes between individuals (Nomiyama et al., 2010), further
increasing the divergence in expression. Importantly, our analyses
specifically capture changes of response variability and suggest a
statistical relationship of these changes with the generic evolutionary
divergence (see Materials and Methods) of gene expression response
(Supplementary Figure S5C).

To validate the predicted changes in transcriptional bursting
during evolution (Figure 5A), we first calculated the theoretical
modulation schemes for all the 169 evolutionary genes across species
and compared these to the moment estimators of the burst size and
frequency from the data (Supplementary Figure S5D). We found
that the average RRMSE of the mean-variance fit in relation to data
was 0.06% ± 0.05% across all species, where 90% genes had an error
smaller than 0.1%. In comparison, the average error for the burst size
predictions was 0.08% ± 0.05%, while the average error for the burst
frequency predictions was 0.05% ± 0.04%. The predicted theoretical
trends are in good agreement with the observed changes of burst size
and frequency. For example, Cxcl10 exhibits concurrent changes of
the burst size and frequency, the level of which is determined by the
slope of the relationships, while Cbx8 exhibits the same modulation

FIGURE 5 (Continued)
complexity. Top: Schematic representation of the hypothesis. Bottom: Relationship between the slope ratio (αA/αB) estimated for 146 pairwise
comparisons between 28 fitted orthologue genes for mouse, rat, rabbit and pig; and the corresponding ratio between species A and B of the number of
conditions per gene with 3-state model fitting better than 2-state model. Absolute difference in AIC of the two models was used for model selection.
Shown is the Spearman correlation coefficient r and a p-value for r > 0.
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across species (Figure 5C). In addition, our predictions of species-
specific modulation scheme are based not only on the slope α, but
also the mean-variance intercept, which we previously showed may
affect the bursting relationships (Figure 2A and Supplementary
Figure S1E). We therefore investigated if the difference of the
slopes alone is sufficient to predict modulation of bursting
characteristics across species (Figure 5A). We stratified the
169 orthologous genes into divergent and non-divergent subsets,
with the divergence threshold defined by a 2-fold change in the slope
of the mean-variance relationships. The divergent subset included
31 genes exhibiting higher slope in mouse, and 15 in pig
(Supplementary Figure S5E). We found that divergent genes,
associated with increased response variability, exhibited
significantly higher average burst sizes (as calculated across all
corresponding conditions) and reciprocally lower normalised
burst frequency when compared between the two species
(Figure 5D). In contrast, the non-divergent genes showed no
significant differences in the burst size or normalized frequency,
as predicted by the linear constraints. Interestingly, we also observed
significant differences in the average expression between the
divergent genes group, opposing to the non-divergent group
(Supplementary Figure S5F).

We then asked if the increased variability in gene expression
between species was associated with changes of regulatory
complexity (Figure 5E). Following previous methodology, we
selected 28 orthologue genes from the subset of 96 of high
coverage genes in mouse and used a genetic algorithm to
recapitulate scRNA-seq count distributions with dynamical 2-
state and 3-state models (see Materials and Methods and
Supplementary Table S6 for details of the analysis). We then
calculated the fold change in the number of conditions (per
gene) fitted with 3-state models across all pairwise comparisons
of the four species. We found that this fold change correlated
(Spearman’s r = 0.41, p < 0.0001) with the ratio of the slopes
between the corresponding linear relationships, such that the
transition to a higher slope was associated with increased
number of 3-state model fits across corresponding conditions
(Figure 5E). Overall, this demonstrates that evolutionary
increases in TLR response variability are associated with
increased regulatory complexity, resulting in larger and less
frequent transcriptional bursting kinetics.

Discussion

Transcription is inherently a stochastic process leading to
heterogeneity in cell-to-cell mRNA levels, which has been studied
from the inception of systems biology (Paulsson, 2004). The most
recent advances suggest the existence of fundamental constraints
governing the heterogeneity of gene expression, which rely on the
scaling between the variance and mean of the mRNA response
distribution (Dar et al., 2016; Zoller et al., 2018). In particular, we
previously developed an approach relaying smFISH a comparative
analyses of noise across many immune-related conditions
(i.e., treatments, doses and times, etc.), which showed that the
overall mRNA variability is linearly constrained by the mean
mRNA response across a range of immune-response stimuli
(Bagnall et al., 2020). However, these approaches were typically

limited by the number of genes considered, not allowing to
generalise the observations to the genome-wide scale. Here,
utilising an existing scRNA-seq data on the evolutionary-
conserved innate immune signalling (Hagai et al., 2018), we
perform global analysis of the TLR gene expression response
variability and underlying transcriptional bursting. We
demonstrate that cell-to-cell variability can be empirically
described by a linear function of the population mean across a
genome. Based on this, we develop a methodology, relying on
statistical modelling of linear mean-variance relationships from
single-cell data, that provides a simple yet meaningful way to
understand regulation of cellular heterogeneity. We demonstrate
that (1) The response heterogeneity of a gene can be defined as the
slope of the mean-variance line across >1,500 individual response
genes. High variability genes include chemokines and cytokines such
as CCL family, while other functional genes are more homogenous,
in agreement with previous work (Hagai et al., 2018). (2) The
changes in heterogeneity between species can be described by the
change in the slope of the corresponding mean-variance lines,
providing insights into the evolutionary control of TLR response
variability. (3) The linear relationships determine the underlying
transcriptional bursting kinetics, revealing different regulatory
modes in response to stimulation and through evolution. (4)
Application of dynamical stochastic models of transcription
demonstrates a link between the variability and the regulatory
complexity, with complexity facilitating heterogeneity via larger
and less frequent transcriptional bursting kinetics.

While, in general the available sequencing data are subject to
measurement noise (Luecken and Theis, 2019), and often restricted
by the number of data points available, the mean-variance
relationships fitted 1,551 genes - 66% of total 2,338 TLR-
inducible genes in primary murine phagocytes across
20 experimental datasets (Figure 1). In comparison, out of the
218 genes with one-to-one orthologues between mouse, rat,
rabbit and pig, 78% fitted mean-variance relationships despite the
number of datapoints being limited to 12 (Figure 5). Fit quality was
reflected in the low mean squared errors between the fitted trends
and data, providing good support for the observed phenomenon.
We found that 430 relationships (out of 1,551 murine fits) were
characterised by statistically significant intercept (α0). While
intuitively zero intercept is expected (i.e., no expression in
untreated conditions), for some genes, this may reflect the
empirical nature of these trends, especially for those with small
intercept (in relation to variance), for example, Cxcl10 (Figure 2C).
However, we found that many genes with non-zero intercept fits
were associated with substantial basal expression in untreated cells,
which was also observed previously for the more quantitative
smFISH data (Bagnall et al., 2020). Basal expression of the
related gene targets has been shown to exhibit different bursting
kinetics and mode of regulation from the inducible expression (Bass
et al., 2021), which in part may explain the fitted non-zero intercepts
for a subset of genes. For α0 = 0, linear constraints essentially imply
that the burst size must be constant (and equal to the slope of the
mean-variance line), while the frequency undergoes modulation
with the populationmean changes in response to stimulation. This is
in general agreement with recent analyses demonstrating a role of
frequency in regulation of LPS-induced macrophages (Robles-
Rebollo et al., 2022) or stimulation (Larson et al., 2013; Fukaya
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et al., 2016; Nicolas et al., 2017; Hoppe et al., 2020; Luo et al., 2022).
However, the presence of non-zero intercepts in linear fits extends
the variety of modulation schemes, including a subset of genes
exhibiting burst size modulation (Figure 3). For instance, a positive
intercept is associated with an inverse relationship between
the burst size and frequency, while a negative intercept may
imply concurrent burst size and frequency changes. As with
the mean-variance relationships, the predicted modulation
schemes are generally in good agreement with the data in terms
of the mean-squared error. Notably, we demonstrate that our
methodology can be extended to capture evolutionary
differences between species. While gene expression divergence
between species has been previously measured in terms of the
population response (Nourmohammad et al., 2017), the slope of
the linear relationships captures the specific differences in TLR
response variability through evolution (Figure 5). We demonstrate
that the evolutionary change of the variability can be described as a
ratio k between the slopes of the corresponding mean-variance fits,
which theoretically implies reciprocal scaling of the burst size and
frequency also by k. Analysis of the 218 TLR orthologue genes
indeed demonstrates that responses of divergent genes are
controlled by reciprocal changes of burst size and frequency,
while non-divergent genes show the same characteristics across
species. Interestingly, we found that within each pair of species,
divergent genes exhibited different changes of variability
suggesting complex evolutionary traits (e.g., 31 genes exhibiting
higher variability in mouse than in pig, and 15 in pig vs. mouse).
Our current analyses also suggest that the slope of the mean-
variance relationship, at least in part is related to the amplitude of
the gene response (Supplementary Figure S1D), suggesting that
more inducible genes exhibited increased variability. It would be
important to better understand how variability of particular
response genes evolved between different species, in the context
of their sequence dissimilarities (Nielsen et al., 2005; Haygood
et al., 2010; Nomiyama et al., 2010; Einarsson et al., 2022) as well as
epigenetic (Lind and Spagopoulou, 2018) and signalling
components (Brennan and Gilmore, 2018) of the TLR signalling
between species.

We used stochastic models of transcription to better
understand regulation of transcriptional bursting (Figure 4).
A typical representation involves a 2-state telegraph model,
where gene activity changes randomly between “off” and “on”
states, facilitating mRNA transcription (Raj et al., 2006;
Zenklusen et al., 2008; Suter et al., 2011; Nicolas et al., 2018).
However, more complex structures are often used to capture
complexity associated with multiple regulatory steps,
combinatorial promoter cycling and transcriptional initiation
(Harper et al., 2011; Rybakova et al., 2015; Zoller et al., 2015;
Yang et al., 2022). We hypothesised that TLR response
variability is linked with the complexity of the transcriptional
regulation. We introduced a 3-state stochastic model, which
assumed a sequential activation between “off”, “intermediate”
and “on” states, equivalent to promoter cycling (Harper et al.,
2011; Zoller et al., 2015). First, we used a computationally
efficient Beta-Poisson model, a steady-state approximation of
the 2-state telegraph model, which has previously been used to fit
scRNA-seq distributions (Larsson et al., 2019; Luo et al., 2022).
However, this model does not take into account the dynamical

nature of the process (measurements at 0, 2, 4 and 6 h) and the
mRNA half-life with many genes peaking early after stimulation
(Hao and Baltimore, 2009). We therefore used a genetic
algorithm to fit the theoretical temporal count distributions at
specific times to the measured scRNA-seq data using the
dynamical 2-state and 3-state models. Based on the Beta-
Poisson fits, we selected 96 high coverage murine response
genes (and 28 orthologue genes for species analyses), which
have existing estimates of mRNA half-life in LPS-stimulated
bone marrow derived macrophages (Hao and Baltimore, 2009;
Kratochvill et al., 2011) or other cell models. Our current
understanding of TLR signalling suggest that due to
endotoxin resistance and desensitisation (Buckley et al., 2006;
Morris et al., 2014; Kalliara et al., 2022), the regulatory network,
and thus model structures and parameters, are time-varying
(Wang et al., 2018). For example, previous work show that
stability of TLR target genes are regulated in response to
stimulation, and also may vary between treatments (Hao and
Baltimore, 2009). However, due to limited availability of the data
as well as substantially increased computational complexity
when considering non-stationary processes (Shand and Li,
2017), we did not incorporate those effects in our models. In
general, the measurement of relevant half-lives over times-scales
of different stimulation protocols would allow more accurate fits
and ultimately better understanding of the influence of time-
varying parameters in the system in the future. In our current
fitting protocols we treated each data time-point (and replicate)
separately, which also allowed more efficient algorithm
implementation to fit 1,507 mouse, and 1,079 orthologue
conditions. We then used the AIC method (Akaike, 1973) to
compare the models considered, including a penalty for
complexity, and select the one that fitted the measured
mRNA distributions most accurately. The results
demonstrated that a large subset of genes and conditions
fitted a dynamical 3-state model better than the 2-state
model. We found that the fraction of conditions explained by
the 3-state model correlated well (r = 0.56, p-value < 0.0001)
with slope of the mean-variance relationship, and thus response
heterogeneity, for the high coverage murine genes (Figure 4).
Similarly, the increased complexity was associated with
evolutionary changes of response variability between species
(Figure 5). In general, we found that increased regulatory
complexity facilitated larger response variability through
increased burst sizes and reduced frequency of transcriptional
bursting (Figure 4D), while scRNA-seq count variance exhibited
correlations with transcription rates and ‘on’ rates. A better
understanding of the relationships, and in particular
mechanistic basics for controlling gene-specific
slopes (i.e., response variability) as well as their sensitivity
to pharmacological perturbation and infection and disease
state, will require further detailed investigations (Robles-
Rebollo et al., 2022). Nevertheless, we believe that our
methodology, relying on the inference of mean-variance
relationships, provides new insight into regulation of single-
cell variability of innate immune signalling and will be
applicable to other gene expression systems, including
prominent stochastic regulation of adaptive immunity (de la
Higuera et al., 2019; Iakovlev et al., 2021).
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Materials and Methods

Analysis environment

Computational analysis was performed using Python v3.8.2 in a
64-bit Ubuntu environment running under Windows Subsystem for
Linux (WSL) 2 and using the conda v4.8.3 package manager.
Relevant packages were NumPy v1.19.1 (Van Der Walt et al.,
2011), pandas v1.0.5 (Reback et al., 2020), Scanpy v1.5.1 (Wolf
et al., 2018), scikit-learn v0.23.1 (Pedregosa et al., 2011), SciPy v1.4.1
(Virtanen et al., 2020) and statsmodels v0.11.1 (Seabold and
Perktold, 2010) for processing and Matplotlib v3.2.1 (Hunter,
2007) and seaborn v0.10.1 (Waskom et al., 2020) for
visualisation. Robust linear regression models and Benjamini-
Hochberg false discovery rate (FDR) correction was performed in
statsmodels. Coefficient of determination (R2) scores were
calculated using the metrics module of scikit-learn.

Acquisition and processing of mRNA count
data

mRNA count data associated with the study by Hagai et al. (2018)
were downloaded from the Array Express database, in particular, the
E-MTAB-6754.processed.2.zip file to obtain the UMI counts of bone
marrow-derived mononuclear phagocytes from mouse, rat, pig and
rabbit. Phagocytes were either untreated (0 h) or stimulated with LPS
for 2, 4 and 6 h, resulting in 12 scRNA-seq datasets per species. In
addition, phagocytes from mice and rat were also treated with PIC at
2, 4 and 6 h. Notably, the dataset contains no UMI counts for PIC
stimulation at 6 h for mouse 1 but has two for mouse 2 (labelled 6 and
6A).When collating the counts, the missing replicate for mouse 1 was
disregarded and the PIC 6A time point—assumed to be a technical
replicate—was excluded. Therefore, 20 datasets (referred as
conditions herein) for the mouse, 21 datasets for the rat,
12 conditions for the pig and the rabbit dataset were considered
for each gene (see Supplementary Table S4). The UMI counts were
median scaled per cell using the normalize_total function of Scanpy
and subsequently used for fitting mean-variance relationships and
bursting modulation. Integer values, referred to as “mRNA counts” in
this work were used for mathematical model fitting (see Github
repository for data normalisation, UMI normalisation (Grün et al.,
2014) and extraction of mRNA count distributions). Gene IDs, gene
symbols and the descriptions of the genes were obtained from the
Ensembl Release 103 database of the four studied species: Mus
musculus (mouse), Rattus norvegicus (rat), Sus scrofa (pig) and
Oryctolagus Cuniculus (rabbit) using the BioMart web tool (Yates
et al., 2020). Hagai et al. (2018) defined a set of 2,336 LPS-responsive
genes based on differential expression in response to LPS stimulation
with FDR-corrected p-value < 0.01 and existing orthologues in rabbit,
rat and pig. Il1b and Tnf were added to this list—as well characterised
TLR-response genes from the study of Bagnall et al. (2020)–resulting
in a set of 2,338 LPS response genes with 46,740 conditions overall.
Similarly, the responsive genes from the three other species were also
determined. 2,586 rat genes, 1892 pig genes and 859 rabbit genes
showed differential expression upon LPS stimulus. 218 one-to-one
orthologue genes were found to be responsive in all species, these
genes formed the analysis subset.

Fitting theoretical bursting characteristics

The sample mean (μ) and variance (σ2) of mRNA counts
were calculated for the measured mRNA count distribution for
individual response genes across conditions. The mean-
variance relationships (σ2 � αμ + α0) were fitted using robust
linear regression, using a Huber M-estimator with a tuning
constant of 1.345, across all relevant conditions. A model’s fit
was considered successful if the slope (α) was statistically
significant based on FDR-adjusted p-value < 0.05, and it
provided a good overall fit (unweighted R2 > 0.6). FDR-
adjusted p-value < 0.05 was also calculated for the intercept
(α0). Assuming linear constraints of mRNA mean and variance,
theoretical bursting characteristics were analytically derived,
using moment estimators; burst size bs = α0/µ + α, burst
frequency bf = µ2/(α0+αμ) and bf = α0/(bs(bs-α)). Relative root

mean square error, �
�������������������������∑N

i�1(experimental datai−model datai)2
N∑N

i
(model datai)2

√
, where N

denoted the number of datapoints, was used to compare
theoretical predictions and experimental data. Relative fold
change was used to calculate the level of burst size and
frequency modulation in the measured data, across all the
conditions per gene:

burst sizemodulation per gene � max bs −min bs

min bs
,

burst frequencymodulation per gene � max bf −min bf

min bf

Comparison between burst size and burst frequency
modulation was quantified as the ratio of the two
quantities, i.e., modulation ratio � burst frequencymodulation

burst sizemodulation .

Pairwise comparison of the slopes of the
mean-variance regressions

The differences in the mean-variance relationships of a gene
between species were measured by pairwise comparisons between
the slopes. A Student’s t-test was performed to determine whether
the two slopes are statistically significantly different, or not. The
following formula was used to calculate the t-statistic values:

tstatistic � slope1 − slope2���������������
SEslope1

2 + SEslope2
2

√ , d.o.f. � n1 + n2 − 4

SEslope represents the standard error of the value of the slope in the
fitting of the robust linear regression model on the data. The degrees
of freedom (d.o.f.) is dependent on the number of data points used to
create the two linear regression lines compared (n1 and n2,
respectively). p-values were determined using the cumulative
distribution function of the relevant t distribution. As the four
slopes were compared pairwise, six p-values were calculated per
gene. p-values were corrected by the Benjamini-Hochberg
procedure. Two slopes were deemed significantly different if the
false discovery rate (FDR) corrected p-value was below 0.05. Subset
of genes with different number of significant FDR-corrected
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p-values were compared using a measure of evolutionary response
divergence, such that response divergence = log[1/3 × ∑j(log[FC
pig] − log[FC glirej])

2], with j =(1,2,3) corresponding to 3 glires
(mouse, rat and rabbit) and FC is the fold change in response to LPS
stimulation per gene (Supplementary Table S4 in (Hagai et al.,
2018)).

Inference of Beta-Poisson model

Inference of Beta-Poisson model parameters (kon, koff and kt)
from individual scRNA-seq count distributions was performed
using the profile-likelihood txburstML script (Larsson et al.,
2019) downloaded from GitHub (version
1844c47be5f1ad2104cf15d425889768ec45df8b). Conditions that
txburstML did not mark as “keep” (indicating convergence) were
discarded. Genes with a least 10 fitted conditions per mouse (out of
20) and rat (out of 21) as well at least 6 in the pig and rabbit (out of
12) were included in the high coverage gene sets.

Modelling and inference of dynamical
models of transcription

Theoretical temporal mRNA distributions for considered models of
transcription were obtained using the Chemical Master Equation (CME)
following our previous approach (Bagnall et al., 2020). In brief, the time
evolution of the probability distribution over mRNA counts P(X, t), is
given by P(X, t) � exp[R(θ)t]P0(X), where R(θ) is a transition rate
matrix describing flow of probability between different states, where a
state is defined by the number of mRNA in the cell at time t and the
transcriptional states of the gene’s alleles.P0(X) is specified by initial data
such that ∑XP0(X) � 1. P(X, t) is calculated using a fast matrix
exponential function implemented in MATLAB by (Al-Mohy and
Higham, 2011). All simulations begin with initial conditions of no
mRNA and both gene alleles being in the ‘off’ state. R(θ) depends on
model structure and the parameters. In this work, we considered a
stochastic telegraph model—with two independent alleles per gene, the
activity of which switches randomly between ‘off’ and ‘on’ states, with the
latter being permissive for mRNA transcription (Raj et al., 2006;
Zenklusen et al., 2008; Suter et al., 2011; Skinner et al., 2016). The
associated kinetic parameters include switching ‘on’ and ‘off’ rates (kon
and koff, respectively) as well as rates of mRNA transcription and
degradation (kt and kd, respectively). We also considered an extended
model including an additional regulatory step, such that each allele exists
in one of three states: an inactive ‘off’, an intermediate ‘I’ or an active ‘on’.
Reversible stochastic transitions (with appropriate rates) occur between
the inactive and intermediate (ton and toff), the intermediate and active
states (kon and koff), as well as direct transition between active and inactive
states (kc). We further assume that transcription occurs only in the
intermediate and active states (kti and kt, respectively).

A genetic algorithm (GA) was implemented using the ga function in
MATLAB and employed to estimate model parameters. We minimised
an objective function given by the average absolute distance between the
theoretical (CME) and measured cumulative distribution functions
(CDFs) across observed mRNA counts per condition
(1/n∑n

i�1|CMEi − CDFi|), where i’s are unique mRNA counts
observed in the measured distributions (for those with total unique

counts n > 1). CDFs were calculated using empirical cumulative
distribution function (ecdf). The best of 10 model fits from
independent GA runs for each condition (using a population size of
100, elite count of 2, crossover factor of 0.6, 20 generations and the
tournament selection function) was retained. Gene activation/
inactivation rates were constrained between 0 and 1 min-1,
transcription was constrained between 0 and 50 mRNA counts min-1

per allele, which is the same order of magnitude to previous estimates
(Schwanhausser et al., 2011; Suter et al., 2011;Molina et al., 2013; Skinner
et al., 2016).MurinemRNAhalf-lives (defines as t1/2 = log(2)/kd, where kd
is a degradation rate) were obtained from literature, when available from
LPS-stimulated bonemarrow derivedmacrophages (Hao and Baltimore,
2009; Kratochvill et al., 2011) or other cell models (Maurer et al., 1999;
Raghavan et al., 2002; Park et al., 2004; Sharova et al., 2009; Kambara
et al., 2014; Payne et al., 2014; Martin et al., 2017; Zainol et al., 2019).
Murine half-lives were also used when fitting orthologue genes.

Akaike’s Information Criterium (AIC) was used to asses model
fits and perform model selection (Akaike, 1973). AIC � 2p −
2 log[L(Θ|X)] where log [L(Θ|X)] is the log-likelihood function
of the fitted mRNA count distribution given measured data X

defined as L � ((∑j
Yj)!∏k
Yk!

)∏N

i�1[P(xi, t)]Y with Yt being a vector of

the number of cells displaying each observed state at time t (the sum
of this vector is the total number of cells N), and p corresponds to
number of parameters in the model; resulting in a penalty for higher
complexity. Models with AIC larger than Q3+1.5(Q3-Q1), where
Q1 and Q3 are the first and third quartiles of the AIC distribution
per model across genes were removed to account for unsatisfactory
GA fits. As a result, out of 1,507 mouse, and 1,079 orthologue (pig,
rat and rabbit) conditions, 1,210 and 981 that fitted 2- and 3-state
models were retained, respectively.

Statistical analyses

Statistical analysis was performed using GraphPad Prism 8 software
(version 8.4.2). The D’Agostino-Pearson test was applied to test for
normal (Gaussian) distribution of acquired data. Two-sample
comparison was conducted using non-parametric Mann Whitney
test. For analyses of variance Kruskal-Wallis ANOVA with Dunn’s
multiple comparisons test was performed. Coefficient of determination
(R2) was used to assess regression fits; Spearman correlation coefficient r
was used to test association between other variables.
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