95 research outputs found

    Detection of KRAS, NRAS and BRAF by mass spectrometry - a sensitive, reliable, fast and cost-effective technique

    Get PDF
    Background: According to current clinical guidelines mutational analysis for KRAS and NRAS is recommended prior to EGFR-directed therapy of colorectal cancer (CRC) in the metastatic setting. Therefore, reliable, fast, sensitive and cost-effective methods for routine tissue based molecular diagnostics are required that allow the assessment of the CRC mutational status in a high throughput fashion. Methods: We have developed a custom designed assay for routine mass-spectrometric (MS) (MassARRAY®, Agena Bioscience) analysis to test the presence/absence of 18 KRAS, 14 NRAS and 4 BRAF mutations. We have applied this assay to 93 samples from patients with CRC and have compared the results with Sanger sequencing and a chip hybridization assay (KRAS LCD-array Kit, Chipron). In cases with discordant results, next-generation sequencing (NGS) was performed. Results: MS detected a KRAS mutation in 46/93 (49 %), a NRAS mutation in 2/93 (2 %) and a BRAF mutation in 1/93 (1 %) of the cases. MS results were in agreement with results obtained by combination of the two other methods in 92 (99 %) of 93 cases. In 1/93 (1 %) of the cases a G12V mutation has been detected by Sanger sequencing and MS, but not by the chip assay. In this case, NGS has confirmed the G12V mutation in KRAS. Conclusions: Mutational analysis by MS is a reliable method for routine diagnostic use, which can be easily extended for testing of additional mutations

    MALDI MS Imaging zur Untersuchung von synovialem Gewebe

    Get PDF
    -:INHALTSVERZEICHNIS I BIBLIOGRAPHISCHE BESCHREIBUNG II REFERAT III ABKÜRZUNGSVERZEICHNIS IV 1 EINLEITUNG 5 1.1 Rheumatoide Arthritis 5 1.2 Stellenwert von Biomarkern bei Rheumatoider Arthritis 5 1.3 Massenspektrometrie 6 1.3.1 Einführung in die Massenspektrometrie 6 1.3.2 MALDI MS Imaging 7 1.3.2.1 Vorteile von MALDI MS Imaging 8 1.3.2.2 Nachteile von MALDI MS Imaging 8 1.3.3 Massenspektrometrie in der Arthritisforschung 9 1.4 Histopathologie bei Rheumatoider Arthritis 9 1.5 Potentielle Biomarker bei Rheumatoider Arthritis 10 1.6 Fragestellung 11 2 PUBLIKATIONSMANUSKRIPT 12 3 ZUSAMMENFASSUNG 17 4 LITERATURVERZEICHNIS 20 5 ANHANG 27 5.1 Selbständigkeitserklärung 27 5.2 Lebenslauf 28 5.3 Danksagungen 3

    PAT-H-MS coupled with laser microdissection to study histone post-translational modifications in selected cell populations from pathology samples

    Get PDF
    Background: Aberrations in histone post-translational modifications (hPTMs) have been linked with various pathologies, including cancer, and could not only represent useful biomarkers but also suggest possible targetable epigenetic mechanisms. We have recently developed an approach, termed pathology tissue analysis of histones by mass spectrometry (PAT-H-MS), that allows performing a comprehensive and quantitative analysis of histone PTMs from formalin-fixed paraffin-embedded pathology samples. Despite its great potential, the application of this technique is limited by tissue heterogeneity. Methods: In this study, we further implemented the PAT-H-MS approach by coupling it with techniques aimed at reducing sample heterogeneity and selecting specific portions or cell populations within the samples, such as manual macrodissection and laser microdissection (LMD). Results: When applied to the analysis of a small set of breast cancer samples, LMD-PAT-H-MS allowed detecting more marked changes between luminal A-like and triple negative patients as compared with the classical approach. These changes included not only the already known H3 K27me3 and K9me3 marks, but also H3 K36me1, which was found increased in triple negative samples and validated on a larger cohort of patients, and could represent a potential novel marker distinguishing breast cancer subtypes. Conclusions: These results show the feasibility of applying techniques to reduce sample heterogeneity, including laser microdissection, to the PAT-H-MS protocol, providing new tools in clinical epigenetics and opening new avenues for the comprehensive analysis of histone post-translational modifications in selected cell populations

    Addition of rituximab to CHOP-like chemotherapy in first line treatment of primary mediastinal B-cell lymphoma

    Get PDF
    Background: The addition of rituximab (R) to CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) -like therapy has improved survival in primary mediastinal B-cell lymphoma (PMBCL) patients. However, these results were obtained in young low risk patients and a reevaluation in an unselected patient cohort is warranted. Methods: In this study, we analyzed 80 PMBCL patients treated with a CHOP-based regimen with and without rituximab. Results: In the non-rituximab cohort 10-year progression free survival (PFS) was 67% and 10-year overall survival (OS) was 72% versus a PFS of 95% and a OS of 92% in the rituximab group, PFS P = 0.001, OS P = 0.023. A subgroup PFS analysis by international prognostic index (IPI) risk revealed that all risk groups benefit from addition of rituximab to induction chemotherapy. In addition, OS probability was higher in the group of non-low risk patients who were treated with rituximab compared to those patients who did not receive rituximab (P = 0.035). In multivariate analysis, only addition of rituximab to induction chemotherapy and reaching complete remission (CR) after first line therapy had a beneficial effect on both PFS and OS, whereas IPI, age, upfront high dose (HD) chemotherapy/autologous blood stem cell transplantation (ABSCT) and rituximab maintenance had no impact on survival. Conclusions: Our data demonstrate a survival benefit in unselected PMBCL patients treated with CHOP-like induction regimen and additional rituximab independently of the IPI risk score

    Differential diagnostic value of CD5 and CD117 expression in thoracic tumors: A large scale study of 1465 non-small cell lung cancer cases

    Get PDF
    Background: Thoracic pathologists are frequently faced with tissue specimens from intrathoracic/mediastinal tumors. Specifically the differentiation between thymic and pulmonary squamous cell carcinomas (SqCC) can be challenging. In order to clarify the differential diagnostic value of CD5 and CD117 in this setting, we performed a large scale expression study of both markers in 1465 non-small cell lung cancer (NSCLC) cases. Methods: Tissue microarrays of formalin-fixed paraffin-embedded resection specimens of 1465 NSCLC were stained with antibodies against CD117 and CD5. Positivity of both markers was correlated with clinicopathological variables. Results: CD117 was positive in 145 out of 1457 evaluable cases (9.9 %) and CD5 was positive in 133 out of 1427 evaluable cases (9.3 %). 28 cases (1.9 %) showed coexpression of CD117 and CD5. Among the 145 cases that were positive for CD117, 97 (66.8 %) were adenocarcinomas (ADC), 34 (23.4 %) were SqCC, 5 (3.4 %) were adenosquamous carcinomas (ADSqCC), 8 (5.5 %) were large cell carcinomas (LC), and one (0.6 %) was a pleomorphic carcinoma (PC). In the CD5 positive group consisting of 133 cases, 123 (92.4 %) were ADC, 0 (0 %) were SqCC, 4 (3.0 %) were ADSqCC, 3 (2.2 %) LC and 3 (2.2 %) were PC. None of the 586 SqCC showed expression of CD5. No association of CD117- or CD5 positivity to patients’ age, pathological stages or to T-, N-, or M- categories was observed. Conclusions: A substantial subset of NSCLC exhibit positivity of CD117 and CD5. Since CD5 expression was not observed in pulmonary SqCC, but is expressed in the majority of thymic squamous cell carcinomas, the application of this immunomarker is a valuable tool in the differential diagnosis of thoracic neoplasms

    WNT4 overexpression and secretion in thymic epithelial tumors drive an autocrine loop in tumor cells in vitro

    Get PDF
    BackgroundWNT4-driven non-canonical signaling is crucial for homeostasis and age-related involution of the thymus. Abnormal WNT signaling is important in many cancers, but the role of WNT signaling in thymic tumors is largely unknown.Materials & MethodsExpression and function of WNT4 and FZD6 were analyzed using qRT–PCR, Western blot, ELISA, in biopsies of non-neoplastic thymi (NT), thymoma and thymic carcinomas. ShRNA techniques and functional assays were used in primary thymic epithelial cells (pTECs) and TC cell line 1889c. Cells were conventionally (2D) grown and in three-dimensional (3D) spheroids.ResultsIn biopsy, WHO classified B3 thymomas and TCs showed increased WNT4 expression compared with NTs. During short-term 2D culture, WNT4 expression and secretion declined in neoplastic pTECs but not in 3D spheroids or medium supplemented with recombinant WNT4 cultures. Under the latter condition, the growth of pTECs was accompanied by increased expression of non-canonical targets RAC1 and JNK. Down-regulation of WNT4 by shRNA induced cell death in pTECs derived from B3 thymomas and led to decreased RAC1, but not JNK protein phosphorylation. Pharmacological inhibition of NF-κB decreased both RAC1 and JNK phosphorylation in neoplastic pTECs.ConclusionsLack of the age-related decline of non-canonical WNT4 expression in TETs and restoration of declining WNT4 expression through exogeneous WNT4 or 3D culture of pTECs hints at an oncogenic role of WNT4 in TETs and is compatible with the WNT4 autocrine loop model. Crosstalk between WNT4 and NF-κB signaling may present a promising target for combined interventions in TETs

    Expression of HMB45, MelanA and SOX10 is rare in non-small cell lung cancer

    Get PDF
    Background: Non-small cell lung cancer (NSCLC) and melanoma are frequent entities in routine diagnostics. Whereas the differential diagnosis is usually straight forward based on histomorphology, it can be challenging in poorly differentiated tumors as melanoma may mimic various histological patterns. Distinction of the two entities is of outmost importance as both are treated differently. HMB45 and MelanA are recommended immunohistological markers for melanoma in this scenario. SOX10 has been described as an additional marker for melanoma. However, comprehensive large-scale data about the expression of melanoma markers in NSCLC tumor tissue specimen are lacking so far. Methods: Therefore, we analyzed the expression of these markers in 1085 NSCLC tumor tissue samples. Tissue microarrays of NSCLC cases were immunohistochemically stained for HMB45, MelanA, and SOX10. Positivity of a marker was defined as ≥1% positive tumor cells. Results: In 1027 NSCLC tumor tissue samples all melanoma as well as conventional immunohistochemical markers for NSCLC could be evaluated. HMB45, MelanA, and SOX10 were positive in 1 (< 1%), 0 (0%) and 5 (< 1%) cases. The HMB45 positive case showed co-expression of SOX10 and was classified as large cell carcinoma. Three out of five SOX10 positive cases were SqCC and one case was an adenosquamous carcinoma. Conclusions: Expression of HMB45, MelanA and SOX10 is evident but exceedingly rare in NSCLC cases. Together with conventional immunomarkers a respective marker panel allows a clear-cut differential diagnosis even in poorly differentiated tumors

    Drug-microenvironment perturbations reveal resistance mechanisms and prognostic subgroups in CLL

    Full text link
    The tumour microenvironment and genetic alterations collectively influence drug efficacy in cancer, but current evidence is limited and systematic analyses are lacking. Using chronic lymphocytic leukaemia (CLL) as a model disease, we investigated the influence of 17 microenvironmental stimuli on 12 drugs in 192 genetically characterised patient samples. Based on microenvironmental response, we identified four subgroups with distinct clinical outcomes beyond known prognostic markers. Response to multiple microenvironmental stimuli was amplified in trisomy 12 samples. Trisomy 12 was associated with a distinct epigenetic signature. Bromodomain inhibition reversed this epigenetic profile and could be used to target microenvironmental signalling in trisomy 12 CLL. We quantified the impact of microenvironmental stimuli on drug response and their dependence on genetic alterations, identifying interleukin 4 (IL4) and Toll-like receptor (TLR) stimulation as the strongest actuators of drug resistance. IL4 and TLR signalling activity was increased in CLL-infiltrated lymph nodes compared with healthy samples. High IL4 activity correlated with faster disease progression. The publicly available dataset can facilitate the investigation of cell-extrinsic mechanisms of drug resistance and disease progression

    Rapid detection of 2-hydroxyglutarate in frozen sections of IDH mutant tumors by MALDI-TOF mass spectrometry

    Get PDF
    All isocitrate dehydrogenase (IDH) mutant solid neoplasms exhibit highly elevated levels of D-2-hydroxyglutarate (D-2HG). Detection of 2HG in tumor tissues currently is performed by gas or liquid chromatography-mass spectrometry (GC- or LC-MS) or biochemical detection. While these methods are highly accurate, a considerable amount of time for tissue preparation and a relatively high amount of tissue is required for testing. We here present a rapid approach to detect 2HG in brain tumor tissue based on matrix-assisted laser desorption ionization - time of flight mass spectrometry (MALDI-TOF). We analyzed 26 brain tumor samples with known IDH1 or IDH2 mutation and compared readouts to those from 28 brain tumor samples of wildtype IDH status. IDH mutant samples exhibited a clear positive signal for 2HG which was not observed in any of the IDH wildtype tumors. Our analytical pipeline allowed for 2HG detection in less than 5 min. Data were validated by determining 2HG levels in all tissues with a biochemical assay. In conclusion, we developed a protocol for rapid detection of 2HG levels and illustrate the possibility to use MALDI-TOF for the detection of metabolites on frozen tissue sections in a diagnostic setting

    Pulmonary cancers across different histotypes share hybrid tuft cell/ionocyte-like molecular features and potentially druggable vulnerabilities

    Get PDF
    Tuft cells are chemosensory epithelial cells in the respiratory tract and several other organs. Recent studies revealed tuft cell-like gene expression signatures in some pulmonary adenocarcinomas, squamous cell carcinomas (SQCC), small cell carcinomas (SCLC), and large cell neuroendocrine carcinomas (LCNEC). Identification of their similarities could inform shared druggable vulnerabilities. Clinicopathological features of tuft cell-like (tcl) subsets in various lung cancer histotypes were studied in two independent tumor cohorts using immunohistochemistry (n = 674 and 70). Findings were confirmed, and additional characteristics were explored using public datasets (RNA seq and immunohistochemical data) (n = 555). Drug susceptibilities of tuft cell-like SCLC cell lines were also investigated. By immunohistochemistry, 10–20% of SCLC and LCNEC, and approximately 2% of SQCC expressed POU2F3, the master regulator of tuft cells. These tuft cell-like tumors exhibited “lineage ambiguity” as they co-expressed NCAM1, a marker for neuroendocrine differentiation, and KRT5, a marker for squamous differentiation. In addition, tuft cell-like tumors co-expressed BCL2 and KIT, and tuft cell-like SCLC and LCNEC, but not SQCC, also highly expressed MYC. Data from public datasets confirmed these features and revealed that tuft cell-like SCLC and LCNEC co-clustered on hierarchical clustering. Furthermore, only tuft cell-like subsets among pulmonary cancers significantly expressed FOXI1, the master regulator of ionocytes, suggesting their bidirectional but immature differentiation status. Clinically, tuft cell-like SCLC and LCNEC had a similar prognosis. Experimentally, tuft cell-like SCLC cell lines were susceptible to PARP and BCL2 co-inhibition, indicating synergistic effects. Taken together, pulmonary tuft cell-like cancers maintain histotype-related clinicopathologic characteristics despite overlapping unique molecular features. From a therapeutic perspective, identification of tuft cell-like LCNECs might be crucial given their close kinship with tuft cell-like SCLC
    corecore