195 research outputs found
Chromatid recommensuration after segmental duplication
<p>Abstract</p> <p>Background</p> <p>Midsegment duplication (dup) of chromatid arms may be symmetric or asymmetric. It can be argued that every dup should yield a discommensured RC with (a) loss of at least one duplicated unit to the template counterpart and; (b) deletion of all sections of the replicating chromatid arm that are distal to both the gap left by the duplicating process and the segment closest to the centromere.</p> <p>Hypothesis</p> <p>Mechanisms capable of recommensuring the stack of chromatids after topological shifts of duplicated units (dups) are discussed. The mechanics might fail in few cases, which are discussed in terms of statistics and scalability.</p> <p>Conclusion</p> <p>The dynamics of the highly non-linear processes discussed here may be relevant to duplications of smaller (epsilon) subunits such as telomeric units within malignant genomes.</p
Single-Cell Systems Pharmacology Identifies Development-Driven Drug Response and Combination Therapy in B Cell Acute Lymphoblastic Leukemia
Leukemia can arise at various stages of the hematopoietic differentiation hierarchy, but the impact of developmental arrest on drug sensitivity is unclear. Applying network-based analyses to single-cell transcriptomes of human B cells, we define genome-wide signaling circuitry for each B cell differentiation stage. Using this reference, we comprehensively map the developmental states of B cell acute lymphoblastic leukemia (B-ALL), revealing its strong correlation with sensitivity to asparaginase, a commonly used chemotherapeutic agent. Single-cell multi-omics analyses of primary B-ALL blasts reveal marked intra-leukemia heterogeneity in asparaginase response: resistance is linked to pre-pro-B-like cells, with sensitivity associated with the pro-B-like population. By targeting BCL2, a driver within the pre-pro-B-like cell signaling network, we find that venetoclax significantly potentiates asparaginase efficacy in vitro and in vivo. These findings demonstrate a single-cell systems pharmacology framework to predict effective combination therapies based on intra-leukemia heterogeneity in developmental state, with potentially broad applications beyond B-ALL
Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation
A subset of patients with familial platelet disorder with propensity to myeloid malignancy and germline RUNX1 mutation develops hematological malignancies, often myelodysplastic syndrome/acute myeloid leukemia, currently recognized in the 2016 WHO classification. Patients who develop hematologic malignancies are typically young, respond poorly to conventional therapy, and need allogeneic stem cell transplant from non-familial donors. Understanding the spectrum of bone marrow morphologic and genetic findings in these patients is critical to ensure diagnostic accuracy and develop criteria to recognize the onset of hematologic malignancies, particularly myelodysplastic syndrome. However, bone marrow features remain poorly characterized. To address this knowledge gap, we analyzed the clinicopathologic and genetic findings of 11 patients from 7 pedigrees. Of these, 6 patients did not develop hematologic malignancies over a 22-month follow-up period; 5 patients developed hematologic malignancies (3 acute myeloid leukemia; 2 myelodysplastic syndrome). All patients had thrombocytopenia at initial presentation. All 6 patients who did not develop hematologic malignancies showed baseline bone marrow abnormalities: low-for-age cellularity (n=4), dysmegakaryopoiesis (n=5), megakaryocytic hypoplasia/hyperplasia (n=5), and eosinophilia (n=4). Two patients had multiple immunophenotypic alterations in CD34-positive myeloblasts; 1 patient had clonal hematopoiesis. In contrast, patients who developed hematologic malignancies had additional cytopenia(s) (n=4), abnormal platelet granulation (n=5), bone marrow hypercellularity (n=4), dysplasia in ≥2 lineages including megakaryocytes (n=3) and acquired clonal genetic aberrations (n=5). In conclusion, our study demonstrated that specific bone marrow abnormalities and acquired genetic alterations may be harbingers of progression to hematological malignancies in patients with familial platelet disorder with germline RUNX1 mutation
Investigation of Inherited Noncoding Genetic Variation Impacting the Pharmacogenomics of Childhood Acute Lymphoblastic Leukemia Treatment
Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents
Psychological and Social Suffering of Another Generation of Palestinian Children Living Under Occupation: An Urgent Call to Advocate [Viewpoint]
Alastair Ager - ORCID: 0000-0002-9474-3563
https://orcid.org/0000-0002-9474-3563https://www.hhrjournal.org/2024/05/psychological-and-social-suffering-of-another-generation-of-palestinian-children-living-under-occupation-an-urgent-call-to-advocate/26pubpub
Epigenomic Mapping Reveals Distinct B Cell Acute Lymphoblastic Leukemia Chromatin Architectures and Regulators
B cell lineage acute lymphoblastic leukemia (B-ALL) is composed of diverse molecular subtypes, and while transcriptional and DNA methylation profiling has been extensively examined, the chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq in primary B-ALL cells from 156 patients spanning ten molecular subtypes and present this dataset as a resource. Differential chromatin accessibility and transcription factor (TF) footprint profiling were employed and identified B-ALL cell of origin, TF-target gene interactions enriched in B-ALL, and key TFs associated with accessible chromatin sites preferentially active in B-ALL. We further identified over 20% of accessible chromatin sites exhibiting strong subtype enrichment and candidate TFs that maintain subtype-specific chromatin architectures. Over 9,000 genetic variants were uncovered, contributing to variability in chromatin accessibility among patient samples. Our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants that promote unique gene-regulatory networks
Vosaroxin in combination with decitabine in newly diagnosed older patients with acute myeloid leukemia or high-risk myelodysplastic syndrome
Vosaroxin is an anti-cancer quinolone-derived DNA topoisomerase II inhibitor. We investigated vosaroxin with decitabine in patients ≥60 years of age with newly diagnosed acute myeloid leukemia (n=58) or myelodysplastic syndrome (≥10% blasts) (n=7) in a phase II non-randomized trial. The initial 22 patients received vosaroxin 90 mg/m2 on days 1 and 4 with decitabine 20 mg/m2 on days 1–5 every 4–6 weeks for up to seven cycles. Due to a high incidence of mucositis the subsequent 43 patients were given vosaroxin 70 mg/m2 on days 1 and 4. These 65 patients, with a median age of 69 years (range, 60–78), some of whom with secondary leukemia (22%), adverse karyotype (35%), or TP53 mutation (20%), are evaluable. The overall response rate was 74% including complete remission in 31 (48%), complete remission with incomplete platelet recovery in 11 (17%), and complete remission with incomplete count recovery in six (9%). The median number of cycles to response was one (range, 1–4). Grade 3/4 mucositis was noted in 17% of all patients. The 70 mg/m2 induction dose of vosaroxin was associated with similar rates of overall response (74% versus 73%) and complete remission (51% versus 41%, P=0.44), reduced incidence of mucositis (30% versus 59%, P=0.02), reduced 8-week mortality (9% versus 23%; P=0.14), and improved median overall survival (14.6 months versus 5.5 months, P=0.007). Minimal residual disease-negative status by multiparametric flow-cytometry at response (± 3 months) was achieved in 21 of 39 (54%) evaluable responders and was associated with better median overall survival (34.0 months versus 8.3 months, P=0.023). In conclusion, the combination of vosaroxin with decitabine is effective and well tolerated at a dose of 70 mg/m2 and warrants randomized prospective evaluation. ClinicalTrials.gov: NCT0189332
Gonadal Transcriptome Alterations in Response to Dietary Energy Intake: Sensing the Reproductive Environment
Reproductive capacity and nutritional input are tightly linked and animals' specific responses to alterations in their physical environment and food availability are crucial to ensuring sustainability of that species. We have assessed how alterations in dietary energy intake (both reductions and excess), as well as in food availability, via intermittent fasting (IF), affect the gonadal transcriptome of both male and female rats. Starting at four months of age, male and female rats were subjected to a 20% or 40% caloric restriction (CR) dietary regime, every other day feeding (IF) or a high fat-high glucose (HFG) diet for six months. The transcriptional activity of the gonadal response to these variations in dietary energy intake was assessed at the individual gene level as well as at the parametric functional level. At the individual gene level, the females showed a higher degree of coherency in gonadal gene alterations to CR than the males. The gonadal transcriptional and hormonal response to IF was also significantly different between the male and female rats. The number of genes significantly regulated by IF in male animals was almost 5 times greater than in the females. These IF males also showed the highest testosterone to estrogen ratio in their plasma. Our data show that at the level of gonadal gene responses, the male rats on the IF regime adapt to their environment in a manner that is expected to increase the probability of eventual fertilization of females that the males predict are likely to be sub-fertile due to their perception of a food deficient environment
Association between troponin level and medium-term mortality in 20 000 hospital patients.
Cardiac troponin (cTn) concentrations above the manufacturer recommended upper limit of normal (ULN) are frequently seen in hospital patients without a clinical presentation consistent with type 1 myocardial infarction, and the significance of this is uncertain. The aim of this study was to assess the relationship between medium-term mortality and cTn concentration in a large consecutive hospital population, regardless of whether there was a clinical indication for performing the test. This prospective observational study included 20 000 consecutive in-hospital and outpatient patients who had a blood test for any reason at a large teaching hospital, and in whom a hs-cTnI assay was measured, regardless of the original clinical indication. Mortality was obtained via NHS Digital. A total of 20 000 patients were included in the analysis and 18 282 of these (91.4%) did not have a clinical indication for cardiac troponin I (cTnI) testing. Overall, 2825 (14.1%) patients died at a median of 809 days. The mortality was significantly higher if the cTnI concentration was above the ULN (45.3% vs 12.3% p<0.001 log rank). Multivariable Cox analysis demonstrated that the log cTnI concentration was independently associated with mortality (HR 1.76 (95% CI 1.65 to 1.88)). Landmark analysis, excluding deaths within 30 days, showed the relationship between cTnI concentration and mortality persisted. In a large, unselected hospital population, in 91.4% of whom there was no clinical indication for testing, cTnI concentration was independently associated with medium-term cardiovascular and non-cardiovascular mortality in the statistical model tested. [Abstract copyright: © Author(s) (or their employer(s)) 2023. No commercial re-use. See rights and permissions. Published by BMJ.
- …