288 research outputs found
Recommended from our members
Lifetime Dependent Flux into the Lowermost Stratosphere for Idealized Trace Gases of Surface Origin
The flux of idealized trace gases across the thermal tropopause is quantified as a function of their chemical lifetime using the Model of Atmospheric Transport and Chemistry (MATCH) driven by National Centers for Environmental Prediction (NCEP) reanalyses. The flux is computed in the limit of instant stratospheric chemical loss, and tropospheric chemistry is idealized as decay with a constant lifetime, τc. Emissions are idealized as time independent, with either a generic anthropogenic pattern or a uniform ocean source. We find that the globally averaged flux into the stratosphere normalized by surface emissions is ∼1% for τc= 8 days and ∼30% for τc ∼ 140 days, slowly approaching the long-lived limit of balance between stratospheric sinks and surface sources. The qualitative τc dependence of the globally averaged flux is captured by a simple one-dimensional model. The flux patterns computed with MATCH for the NCEP reanalyses are insensitive to τc and reveal preferred pathways into the stratosphere: The divergent circulation feeding isentropic cross-tropopause transport, storm tracks in the winter hemisphere, and isentropic transport to high latitudes
Recommended from our members
Air-Mass Origin as a Diagnostic of Tropospheric Transport
We introduce rigorously defined air masses as a diagnostic of tropospheric transport. The fractional contribution from each air mass partitions air at any given point according to either where it was last in the planetary boundary layer or where it was last in contact with the stratosphere. The utility of these air-mass fractions is demonstrated for the climate of a dynamical core circulation model and its response to specified heating. For an idealized warming typical of end-of-century projections, changes in air-mass fractions are in the order of 10% and reveal the model's climate change in tropospheric transport: poleward-shifted jets and surface-intensified eddy kinetic energy lead to more efficient stirring of air out of the midlatitude boundary layer, suggesting that, in the future, there may be increased transport of black carbon and industrial pollutants to the Arctic upper troposphere. Correspondingly, air is less efficiently mixed away from the subtropical boundary layer. The air-mass fraction that had last stratosphere contact at midlatitudes increases all the way to the surface, in part due to increased isentropic eddy transport across the tropopause. Correspondingly, the air-mass fraction that had last stratosphere contact at high latitudes is reduced through decreased downwelling across the tropopause. A weakened Hadley circulation leads to decreased interhemispheric transport in the model's future climate
Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump
Accurate predictive modelling of the ocean's global carbon and oxygen cycles is challenging because of uncertainties in both biogeochemistry and ocean circulation. Advances over the last decade have made parameter optimization feasible, allowing models to better match observed biogeochemical fields. However, does fitting a biogeochemical model to observed tracers using a circulation with known biases robustly capture the inner workings of the biological pump? Here we embed a mechanistic model of the ocean's coupled nutrient, carbon, and oxygen cycles into two circulations for the current climate. To assess the effects of biases, one circulation (ACCESS-M) is derived from a climate model and the other from data assimilation of observations (OCIM2). We find that parameter optimization compensates for circulation biases at the expense of altering how the biological pump operates. Tracer observations constrain pump strength and regenerated inventories for both circulations, but ACCESS-M export production optimizes to twice that of OCIM2 to compensate for ACCESS-M having lower sequestration efficiencies driven by less efficient particle transfer and shorter residence times. Idealized simulations forcing complete Southern Ocean nutrient utilization show that the response of the optimized system is sensitive to the embedding circulation. In ACCESS-M, Southern Ocean nutrient and DIC trapping is partially short-circuited by unrealistically deep mixed layers. For both circulations, intense Southern Ocean production deoxygenates Southern-Ocean-sourced deep waters, muting the imprint of circulation biases on oxygen. Our findings highlight that the biological pump's plumbing needs careful assessment to predict the biogeochemical response to environmental changes, even when optimally matching observations.</p
Flux Distributions as Robust Diagnostics of Stratosphere-Troposphere Exchange
We perform the first analysis of stratosphere-troposphere exchange in terms of distributions that partition the one-way flux across the thermal tropopause according to stratospheric residence time Ï„ and the regions where air enters and exits the stratosphere. These distributions robustly quantify one-way flux without being rendered ill defined by the short-Ï„ eddy-diffusive singularity. Diagnostics are computed with an idealized circulation model with topography only in the Northern Hemisphere (NH) run under perpetual NH winter conditions. Suitable integrations of the flux distribution are used to determine the stratospheric mean residence time inline image and the mass fraction of the stratosphere in any given residence time interval. We find that the largest mass fraction is destined for isentropic cross-tropopause transport, with one-way fluxes that are sustained over a broad range of residence times. Air exiting the stratosphere in the winter hemisphere has significantly longer mean residence times than air exiting in the summer hemisphere because the winter hemisphere has a deeper circulation and stronger eddy diffusion. We also explore the sensitivity of the stratosphere-troposphere exchange to changes in the circulation by increasing the amplitude of the topography. The resulting more vigorous residual mean circulation dominates over increased eddy diffusion, leading to decreased inline image except for air exiting at high NH latitudes, for which inline image increases. These findings underline that the flux distributions diagnose the integrated advective-diffusive tropopause-to-tropopause transport and not merely advection by the residual mean circulation
Recommended from our members
Seasonal Ventilation of the Stratosphere: Robust Diagnostics from One-Way Flux Distributions
We present an analysis of the seasonally varying ventilation of the stratosphere using one-way flux distributions. Robust transport diagnostics are computed using GEOSCCM subject to fixed present-day climate forcings. From the one-way flux, we determine the mass of the stratosphere that is in transit since entry through the tropical tropopause to its exit back into the troposphere, partitioned according to stratospheric residence time and exit location. The seasonalities of all diagnostics are quantified with respect to the month of year (a) when air enters the stratosphere, (b) when the mass of the stratosphere is partitioned, and (c) when air exits back into the troposphere. We find that the return flux, within 3 months since entry, depends strongly on when entry occurred: (34 +/- 10)% more of the air entering the stratosphere in July leaves poleward of 45 deg N compared to air that enters in January. The month of year when the air mass is partitioned is also found to be important: The stratosphere contains about six times more air of tropical origin during late summer and early fall that will leave poleward of 45 deg within 6 months since entering the stratosphere compared to during late winter to late spring. When the entire mass of the air that entered the stratosphere at the tropics regardless of its residence time is considered, we find that (51 +/- 1)% and (39 +/- 2)% will leave poleward of 10 deg in the Northern Hemisphere (NH) and Southern Hemisphere (SH), respectively
- …