403 research outputs found

    Igneous layering in the syenites of Nunarssuit and West Kungnat, South Greenland

    Get PDF

    Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils

    Get PDF
    To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota

    Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity

    Get PDF
    We carried out mesocosm experiments using either the anecic earthworm Lumbricus terrestris or the endogeic earthworm Allolobophora chlorotica and loam, silt loam and sandy loam soils to investigate the differing impact of these ecotypes on aggregate formation (percentage water stable aggregates, %WSA) and soil water holding capacity (WHC), two soil properties that underpin many of the ecosystem services provided by soils. Earthworms significantly increased %WSA (by 16-56 % and 19-63 % relative to earthworm free controls for L. terrestris and A. chlorotica, respectively). For L. terrestris this increase was significantly greater in the upper 6.5 cm of the soil where their casts were more obviously present. A. chlorotica treatments significantly increased WHC by 7-16 %. L. terrestris only caused a significant increase in WHC (of 11 %) in the upper 6.5 cm of the sandy loam soil. Linear regression indicated a consistent relationship between increases in %WSA and WHC for both earthworm species. However, for a given %WSA, WHC was higher for A. chlorotica than L. terrestris likely due to the known differences in their burrow structure. Overall, earthworms increased soil %WSA and WHC but the significant species / ecotype differences need to be considered in discussions of the beneficial impacts of earthworms to soil properties
    • …
    corecore