76 research outputs found

    Lymphocyte apoptosis in children with central nervous system tuberculosis: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of the apoptosis mechanisms involved in the pathogenesis of tuberculosis have suggested that <it>Mycobacterium tuberculosis </it>can actively interfere with the apoptosis of infected cells. <it>In vivo </it>studies have been performed in adult populations but have not focused on this process in children. In the present study, we analyzed spontaneous T lymphocyte (PBT) apoptosis in the peripheral blood of children with central nervous system tuberculosis (CNS TB), before and after chemotherapy, and compared the results with healthy controls.</p> <p>Methods</p> <p>A case-control study was conducted from January 2002 to June 2009. It included 18 children with CNS TB and 17 healthy controls. Spontaneous apoptosis of PBTs, including CD4<sup>+</sup>, CD8<sup>+ </sup>and CD8<sup>+</sup>/CD28<sup>+ </sup>T cells, was evaluated after 24 and 72 h of culture in complete medium, using the Annexin V detection test. Analysis was conducted before and after chemotherapy, and expression of the apoptotic markers CD95 (Fas) and Fas ligand (FasL) was evaluated.</p> <p>Results</p> <p>Higher percentages of apoptotic T cells and CD4 lymphocytes were isolated from children with acute phase CNS TB than from children in the control group (p < 0.05). This difference significantly decreased after 60 days of specific treatment. In children with CNS TB, high levels of Fas ligand expression were detected in lymphocyte populations, associated with a high percentage of Fas positive cells, before and after treatment. In contrast to the CD4+ apoptosis profile, we did not find any significant difference in total CD8<sup>+ </sup>cell apoptosis between children with acute phase disease and the control group. However, the percentage of apoptotic CD8<sup>+</sup>/CD28<sup>+ </sup>T cells was significantly higher in the children with acute phase disease than in the healthy controls.</p> <p>Conclusions</p> <p>Our findings indicate that CNS TB in pediatric patients increases the sensitivity of CD4 and CD8<sup>+</sup>/CD28<sup>+ </sup>T cells to apoptosis, suggesting a hypoergic status of this infection. This could play a key role in the immunopathogenesis of this complicated form of TB. Interestingly, specific chemotherapy is able to normalize both apoptosis sensitivity and T-cell activation.</p

    Beta defensin-2 is reduced in central but not in distal airways of smoker COPD patients

    Get PDF
    Background: Altered pulmonary defenses in chronic obstructive pulmonary disease (COPD) may promote distal airways bacterial colonization. The expression/activation of Toll Like receptors (TLR) and beta 2 defensin (HBD2) release by epithelial cells crucially affect pulmonary defence mechanisms. Methods: The epithelial expression of TLR4 and of HBD2 was assessed in surgical specimens from current smokers COPD (s-COPD; n = 17), ex-smokers COPD (ex-s-COPD; n = 8), smokers without COPD (S; n = 12), and from non-smoker non-COPD subjects (C; n = 13). Results: In distal airways, s-COPD highly expressed TLR4 and HBD2. In central airways, S and s-COPD showed increased TLR4 expression. Lower HBD2 expression was observed in central airways of s-COPD when compared to S and to ex-s-COPD. s-COPD had a reduced HBD2 gene expression as demonstrated by real-time PCR on micro-dissected bronchial epithelial cells. Furthermore, HBD2 expression positively correlated with FEV1/FVC ratio and inversely correlated with the cigarette smoke exposure. In a bronchial epithelial cell line (16 HBE) IL-1β significantly induced the HBD2 mRNA expression and cigarette smoke extracts significantly counteracted this IL-1 mediated effect reducing both the activation of NFkB pathway and the interaction between NFkB and HBD2 promoter. Conclusions: This study provides new insights on the possible mechanisms involved in the alteration of innate immunity mechanisms in COPD. © 2012 Pace et al

    Nutritional status and physical inactivity in moderated asthmatics: A pilot study

    No full text
    Preservation of nutritional status and of fat-free mass (FFM) and/or preventing of fat mass (FM) accumulation have a positive impact on well-being and prognosis in asthma patients. Physical inactivity is identified by World Health Organization as the fourth leading risk factor for global mortality. Physical activity (PA) may contribute to limit FM accumulation, but little information is available on the interactions between habitual PA and body composition and their association with disease severity in asthma severity. Associations between habitual PA, FM, FFM, and pulmonary function were investigated in 42 subjects (24 patients with mild-moderate asthma and 18 matched control subjects). Sensewear Armband was used to measure PA and metabolic equivalent of tasks (METs) continuously over 4 days, while body composition was measured by bioelectrical impedance analysis. Respiratory functions were also assessed in all study participants. FM and FFM were comparable in mild-moderate asthmatics and controls, but PA was lower in asthmatics and it was negatively correlated with FM and positively with the FFM marker body cell mass in all study subjects (P < 0.05). Among asthmatics, treated moderate asthmatics (ICS, n = 12) had higher FM and lower PA, METs, steps number/die, and forced expiratory volume in the 1st second (FEV1)/forced vital capacity (FVC) than in untreated intermittent asthmatics (UA, n = 12). This pilot study assesses that in mild-moderate asthma patients, lower PA is associated with higher FM and higher disease severity. The current results support enhancement of habitual PA as a potential tool to limit FM accumulation and potentially contribute to preserve pulmonary function in moderate asthma, considering the physical inactivity a strong risk factor for asthma worsening

    Mucoadhesive solid lipid microparticles for controlled release of a corticosteroid in the chronic obstructive pulmonary disease treatment

    No full text
    Aim: Therapeutic efficacy of pulmonary diseases is often limited and drug delivery systems offer new solutions to clinical problems. Solid lipid microparticles (SLMs) are suggested as systems for the delivery of therapeutics to the lung as, because of their size, they are able to deposit into secondary bronchi. Materials & methods: Here, we describe two novel different SLMs using chitosan and alginate such as mucoadhesive polymers and we also studied their biocompatibility and their effectiveness compared with the free drug in controlling senescence and inflammatory processes in cigarette smoke extracts. Results: Data reported show that fluticasone propionate (FP)-loaded SLMs are more effective than FP alone in controlling oxidative stress. Conclusion: The therapeutic approach using FP-loaded microparticles could be a promising strategy for the treatment of the chronic inflammatory pulmonary diseases

    Advances in asthma pathophysiology: stepping forward from the Maurizio Vignola experience

    Get PDF
    Maurizio Vignola was a superb and innovative researcher, who wrote seminal papers on the biology of airway epithelium in asthma. Inflammation and remodelling were the main topics of his research, mostly conducted in biopsy specimens from patients with asthma of variable severity, encompassing the entire spectrum of the disease from mild to severe asthma. His observations contributed to define the biology of asthma as we know it today, and opened the way to the personalised treatment of asthma. His group has successfully continued to investigate the biology and clinical aspects of bronchial asthma, with major interest in the clinical use of biomarkers to monitor disease activity, and in the development of new therapeutic perspectives. This review summarises the latest work on these topics proudly conducted by Maurizio's closest collaborators. The results indicate significant progress in our understanding of asthma in the last 10 years, in particular increased knowledge of the complex interaction between inflammatory and remodelling pathways, improved recognition of biological and clinical asthma phenotypes, and development of new treatment strategies, especially for patients with severe corticosteroid-resistant asthma

    Carbocysteine regulates innate immune responses and senescenses processes in cigarette smoke stimulated bronchial epithelial cells

    No full text
    Cigarette smoke represents the major risk factor for chronic obstructive pulmonary disease (COPD). Cigarette smoke extracts (CSE) alter TLR4 expression and activation in bronchial epithelial cells. Carbocysteine, an anti-oxidant and mucolytic agent, is effective in reducing the severity and the rate of exacerbations in COPD patients. The effects of carbocysteine on TLR4 expression and on the TLR4 activation downstream events are largely unknown. This study was aimed to explore whether carbocysteine, in a human bronchial epithelial cell line (16-HBE), counteracted some pro-inflammatory CSE-mediated effects. In particular, TLR4 expression, LPS binding, p21 (a senescence marker), IL-8 mRNA and release in CSE-stimulated 16-HBE as well as actin reorganization in neutrophils cultured with supernatants from bronchial epithelial cells which were stimulated with CSE and/or carbocysteine were assessed. TLR4 expression, LPS binding, and p21 expression were assessed by flow cytometry, IL-8 mRNA by Real Time PCR and IL-8 release by ELISA. Actin reorganization, a prerequisite for cell migration, was determined using Atto 488 phalloidin in neutrophils by flow cytometry and fluorescence microscopy. CSE increased: (1) TLR4, LPS binding and p21 expression; (2) IL-8 mRNA and IL-8 release due to IL-1 stimulation; (3) neutrophil migration. Carbocysteine in CSE stimulated bronchial epithelial cells, reduced: (1) TLR4, LPS binding and p21; (2) IL-8 mRNA and IL-8 release due to IL-1 stimulation; (3) neutrophil chemotactic migration. In conclusion, the present study provides compelling evidences that carbocysteine may contribute to control the inflammatory and senescence processes present in smokers

    Pleural Mesothelial Cells Express Both BLT2 and PPAR and Mount an Integrated Response to Pleural Leukotriene B4

    No full text
    Leukotriene B(4) (LTB(4)) plays a crucial role in the recruitment of neutrophils into the pleural space. We identified for the first time the mechanisms by which LTB(4) interacts with mesothelial cells and recruits neutrophils in the pleural compartment. Primary pleural mesothelial cells express both the proinflammatory receptor for LTB(4) BLT2, and the anti-inflammatory receptor for LTB(4), PPARalpha. Parapneumonic pleural effusions highly increase BLT2 expression and, via BLT2 activation, increase the adhesion between mesothelial cells and neutrophils and the expression of ICAM-1 on mesothelial cells. The block of PPARalpha further increases both cell adhesion and ICAM-1 expression. BLT2 activation promotes the activation, on mesothelial cells, of STAT-1 but not the activation of NF-kappaB transcription factor. The increase of ICAM-1 expression is achieved via increased tyrosine phosphorylation activity since herbimycin, a tyrosine kinase inhibitor, reduces and since Na orthovanadate, a tyrosine phosphatase inhibitor, further increases ICAM-1 expression. This study demonstrates that pleural mesothelial cells, expressing both proinflammatory and anti-inflammatory LTB(4) receptors, are able to mount an integrated response to LTB(4) with a prevalence of BLT2 activities in the presence of an inflammatory milieu within the pleura

    Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells

    No full text
    Airway epithelium is emerging as a regulator of innate immune responses to a variety of insults including cigarette smoke. The main goal of this study was to explore the effects of cigarette smoke extracts (CSE) on Toll-like receptor (TLR) expression and activation in a human bronchial epithelial cell line (16-HBE). The CSE increased the expression of TLR4 and the lipopolysaccharide (LPS) binding, the nuclear factor-ÎşB (NF-ÎşB) activation, the release of interleukin-8 (IL-8) and the chemotactic activity toward neutrophils. It did not induce TLR2 expression or extracellular signal-regulated signal kinase 1/2 (ERK1/2) activation. The LPS increased the expression of TLR4 and induced both NF-ÎşB and ERK1/2 activation. The combined exposure of 16-HBE to CSE and LPS was associated with ERK activation rather than NF-ÎşB activation and with a further increase of IL-8 release and of chemotactic activity toward neutrophils. Furthermore, CSE decreased the constitutive interferon-inducible protein-10 (IP-10) release and counteracted the effect of LPS in inducing both the IP-10 release and the chemotactic activity toward lymphocytes. In conclusion, cigarette smoke, by altering the expression and the activation of TLR4 via the preferential release of IL-8, may contribute to the accumulation of neutrophils within the airways of smokers
    • …
    corecore