35,238 research outputs found

    Laser anemometry techniques for turbine applications

    Get PDF
    Laser anemometry offers a nonintrusive means for obtaining flow field information. Current research at NASA Lewis Research Center is focused on instrumenting a warm turbine facility with a laser anemometer system. In an effort to determine the laser anemometer system best qualified for the warm turbine environment, the performance of a conventional laser fringe anemometer and a two spot time of flight system were compared with a new, modified time of flight system, called a Four Spot laser anemometer. The comparison measurements were made in highly turbulent flows near walls. The Four Spot anemometer uses elliptical spots to increase the flow acceptance angle to be comparable to that of a Laser Fringe Anemometer. Also, the Four Spot uses an optical code that vastly simplifies the pulse detection processor. The results of the comparison measurements will exemplify which laser anemometer system is best suited to the hostile environment typically encountered in warm rotating turbomachinery

    Dust in regions of massive star formation

    Get PDF
    It is suggested that protostars increase mass by accreting the surrounding gas and dust. Grains are destroyed as they near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grains can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. General constraints were considered on the initial dust-to-gas ratio and mass accretion rates that permit inflow. These results were constrained further by constructing a numerical model, including radiative deceleration on grains and grain destruction processes. Also the constraints on dust properties were investigated which allow the formation of massive stars. The obtained results seem to suggest that massive star formation requires rather extreme preconditioning of the grain and gas environment

    High-order, Dispersionless "Fast-Hybrid" Wave Equation Solver. Part I: O(1)\mathcal{O}(1) Sampling Cost via Incident-Field Windowing and Recentering

    Get PDF
    This paper proposes a frequency/time hybrid integral-equation method for the time dependent wave equation in two and three-dimensional spatial domains. Relying on Fourier Transformation in time, the method utilizes a fixed (time-independent) number of frequency-domain integral-equation solutions to evaluate, with superalgebraically-small errors, time domain solutions for arbitrarily long times. The approach relies on two main elements, namely, 1) A smooth time-windowing methodology that enables accurate band-limited representations for arbitrarily-long time signals, and 2) A novel Fourier transform approach which, in a time-parallel manner and without causing spurious periodicity effects, delivers numerically dispersionless spectrally-accurate solutions. A similar hybrid technique can be obtained on the basis of Laplace transforms instead of Fourier transforms, but we do not consider the Laplace-based method in the present contribution. The algorithm can handle dispersive media, it can tackle complex physical structures, it enables parallelization in time in a straightforward manner, and it allows for time leaping---that is, solution sampling at any given time TT at O(1)\mathcal{O}(1)-bounded sampling cost, for arbitrarily large values of TT, and without requirement of evaluation of the solution at intermediate times. The proposed frequency-time hybridization strategy, which generalizes to any linear partial differential equation in the time domain for which frequency-domain solutions can be obtained (including e.g. the time-domain Maxwell equations), and which is applicable in a wide range of scientific and engineering contexts, provides significant advantages over other available alternatives such as volumetric discretization, time-domain integral equations, and convolution-quadrature approaches.Comment: 33 pages, 8 figures, revised and extended manuscript (and now including direct comparisons to existing CQ and TDIE solver implementations) (Part I of II

    Theory of photoferroelectric response in SmC* liquids

    Full text link
    We are concerned with the modification of liquid crystalline and polar order in SmC* liquids by illumination. In particular we show that non-uniformity due to absorption and also dynamics, can be complex. The variation of polarization with temperature, while illuminated, is modified from that assuming uniformity. Apparent changes of polarization with illumination will be shown to be underestimated due to non-uniformity. The dynamics is shown to depend on propagating fronts of photo-conversion penetrating the sample.Comment: 6 pages, 7 figure

    Generalized Uncertainty Principle Corrections to the Simple Harmonic Oscillator in Phase Space

    Full text link
    We compute Wigner functions for the harmonic oscillator including corrections from generalized uncertainty principles (GUPs), and study the corresponding marginal probability densities and other properties. We show that the GUP corrections to the Wigner functions can be significant, and comment on their potential measurability in the laboratory.Comment: minor revisions; included journal referenc

    Enhanced nonperturbative effects in jet distributions

    Get PDF
    We consider the triple differential distribution d\Gamma/(dE_J)(dm_J^2)(d\Omega_J) for two-jet events at center of mass energy M, smeared over the endpoint region m_J^2 << M^2, |2 E_J -M| ~ \Delta, \lqcd << \Delta << M. The leading nonperturbative correction, suppressed by \lqcd/\Delta, is given by the matrix element of a single operator. A similar analysis is performed for three jet events, and the generalization to any number of jets is discussed. At order \lqcd/\Delta, non-perturbative effects in four or more jet events are completely determined in terms of two matrix elements which can be measured in two and three jet events.Comment: Significant changes made. The first moment does not vanish--the paper has been modified to reflect this. Relations between different numbers of jets still hol

    Bridging the gap by shaking superfluid matter

    Full text link
    In cold compact stars, Cooper pairing between fermions in dense matter leads to the formation of a gap in their excitation spectrum and typically exponentially suppresses transport properties. However, we show here that weak Urca reactions become strongly enhanced and approach their ungapped level when the star undergoes density oscillations of sufficiently large amplitude. We study both the neutrino emissivity and the bulk viscosity due to direct Urca processes in hadronic, hyperonic and quark matter and discuss different superfluid and superconducting pairing patterns.Comment: 5 pages, 4 figure

    Bispectrum signatures of a modified vacuum in single field inflation with a small speed of sound

    Full text link
    Deviations from the Bunch-Davies vacuum during an inflationary period can leave a testable imprint on the higher-order correlations of the CMB and large scale structures in the Universe. The effect is particularly pronounced if the statistical non-Gaussianity is inherently large, such as in models of inflation with a small speed of sound, e.g. DBI. First reviewing the motivations for a modified vacuum, we calculate the non-Gaussianity for a general action with a small speed of sound. The shape of its bispectrum is found to most resemble the 'orthogonal' or 'local' templates depending on the phase of the Bogolyubov parameter. In particular, for DBI models of inflation the bispectrum can have a profound 'local' template feature, in contrast to previous results. Determining the projection into the observational templates allows us to derive constraints on the absolute value of the Bogolyubov parameter. In the small sound speed limit, the derived constraints are generally stronger than the existing constraint derived from the power spectrum. The bound on the absolute value of the Bogolyubov parameter ranges from the 10^-6 to the 10^-3 level for H/\Lambda_c = 10^-3, depending on the specific details of the model, the sound speed and the phase of the Bogolyubov parameter.Comment: 34 pages, 8 figures, 2 appendices. New in this version: added references, fixed typos, modified sentences. Version submitted to JCA
    • …
    corecore