703 research outputs found

    New Insights on Emotional Contributions to Human Postural Control

    Get PDF
    It has been just over 20 years since the effects of height-induced threat on human postural control were first investigated. Raising the height of the support surface on which individuals stood increased the perceived consequences of instability and generated postural control changes. Since this initial work, converging evidence has accumulated supporting the efficacy of using height-induced threat to study the effects of emotions on postural control and confirming a direct influence of threat-related changes in arousal, anxiety, and fear of falling on all aspects of postural control, including standing, anticipatory, and reactive balance. In general, threat-related postural changes promote a greater physical safety margin while maintaining upright stance. We use the static balance literature to critically examine the current state of knowledge regarding: (1) the extent to which threat-related changes in postural control are sensitive to threat-related changes in emotions; (2) the underlying neurophysiological and cognitive mechanisms that may contribute to explaining the relationship between emotions and postural control; and (3) the generalizability of threat-related changes across different populations and types of threat. These findings have important implications for understanding the neuromechanisms that control healthy balance, and highlight the need to recognize the potential contributions of psychological and physiological factors to balance deficits associated with age or pathology. We conclude with a discussion of the practical significance of this research, its impact on improving diagnosis and treatment of postural control deficits, and potential directions for future research

    Use of induced acceleration to quantify the (de)stabilization effect of external and internal forces on postural responses

    Get PDF
    Due to the mechanical coupling between the body segments, it is impossible to see with the naked eye the causes of body movements and understand the interaction between movements of different body parts. The goal of this paper is to investigate the use of induced acceleration analysis to reveal the causes of body movements. We derive the analytical equations to calculate induced accelerations and evaluate its potential to study human postural responses to support-surface translations. We measured the kinematic and kinetic responses of a subject to sudden forward and backward translations of a moving platform. The kinematic and kinetics served as input to the induced acceleration analyses. The induced accelerations showed explicitly that the platform acceleration and deceleration contributed to the destabilization and restabilization of standing balance, respectively. Furthermore, the joint torques, coriolis and centrifugal forces caused by swinging of the arms, contributed positively to stabilization of the center of mass. It is concluded that induced acceleration analyses is a valuable tool in understanding balance responses to different kinds of perturbations and may help to identify the causes of movement in different pathologies

    DEEP AND SUPERFICIAL TRUNK MUSCLE ACTIVATION DURING WHEELCHAIR PROPULSION

    Get PDF
    Efficient manual wheelchair propulsion is essential for persons with spinal cord injury (SCI), in their activities of daily life as well as for their participation in physical training and sports. The aim of this study in progress is to investigate the coordination of upper body muscles during wheelchair propulsion in persons with SCI at different spinal levels. Particular attention will be paid to the ability of persons with thoracic SCI, clinically classified as “complete”, to activate and coordinate their abdominal muscles

    Postural threat increases sample entropy of postural control

    Get PDF
    IntroductionPostural threat elicits modifications to standing balance. However, the underlying neural mechanism(s) responsible remain unclear. Shifts in attention focus including directing more attention to balance when threatened may contribute to the balance changes. Sample entropy, a measure of postural sway regularity with lower values reflecting less automatic and more conscious control of balance, may support attention to balance as a mechanism to explain threat-induced balance changes. The main objectives were to investigate the effects of postural threat on sample entropy, and the relationships between threat-induced changes in physiological arousal, perceived anxiety, attention focus, sample entropy, and traditional balance measures. A secondary objective was to explore if biological sex influenced these relationships.MethodsHealthy young adults (63 females, 42 males) stood quietly on a force plate without (No Threat) and with (Threat) the expectation of receiving a postural perturbation (i.e., forward/backward support surface translation). Mean electrodermal activity and anterior–posterior centre of pressure (COP) sample entropy, mean position, root mean square, mean power frequency, and power within low (0–0.05 Hz), medium (0.5–1.8 Hz), and high-frequency (1.8–5 Hz) components were calculated for each trial. Perceived anxiety and attention focus to balance, task objectives, threat-related stimuli, self-regulatory strategies, and task-irrelevant information were rated after each trial.Results and DiscussionSignificant threat effects were observed for all measures, except low-frequency sway. Participants were more physiologically aroused, more anxious, and directed more attention to balance, task objectives, threat-related stimuli, and self-regulatory strategies, and less to task-irrelevant information in the Threat compared to No Threat condition. Participants also increased sample entropy, leaned further forward, and increased the amplitude and frequency of COP displacements, including medium and high-frequency sway, when threatened. Males and females responded in the same way when threatened, except males had significantly larger threat-induced increases in attention to balance and high-frequency sway. A combination of sex and threat-induced changes in physiological arousal, perceived anxiety, and attention focus accounted for threat-induced changes in specific traditional balance measures, but not sample entropy. Increased sample entropy when threatened may reflect a shift to more automatic control. Directing more conscious control to balance when threatened may act to constrain these threat-induced automatic changes to balance

    Embedded Stellar Clusters in the W3/W4/W5 Molecular Cloud Complex

    Get PDF
    We analyze the embedded stellar content in the vicinity of the W3/W4/W5 HII regions using the FCRAO Outer Galaxy 12CO(J=1-0) Survey, the IRAS Point Source Catalog, published radio continuum surveys, and new near-infrared and molecular line observations. Thirty-four IRAS Point Sources are identified that have far-infrared colors characteristic of embedded star forming regions, and we have obtained K' mosaics and 13CO(J=1-0) maps for 32 of them. Ten of the IRAS sources are associated with an OB star and 19 with a stellar cluster, although three OB stars are not identified with a cluster. Half of the embedded stellar population identified in the K' images is found in just the 5 richest clusters, and 61% is contained in IRAS sources associated with an embedded OB star. Thus rich clusters around OB stars contribute substantially to the stellar population currently forming in the W3/W4/W5 region. Approximately 39% of the cluster population is embedded in small clouds with an average mass of ~130 Mo that are located as far as 100 pc from the W3/W4/W5 cloud complex. We speculate that these small clouds are fragments of a cloud complex dispersed by previous episodes of massive star formation. Finally, we find that 4 of the 5 known embedded massive star forming sites in the W3 molecular cloud are found along the interface with the W4 HII region despite the fact that most of the molecular mass is contained in the interior regions of the cloud. These observations are consistent with the classical notion that the W4 HII region has triggered massive star formation along the eastern edge of the W3 molecular cloud.Comment: to appear in ApJS, see http://astro.caltech.edu/~jmc/papers/w

    Multi-modales Biofeedback System zur Vorbeugung von Stürzen Multi-modal Biofeedback System for the Prevention of Falls

    Get PDF
    Das Biofeedback des Körperschwankens stellt eine Möglichkeit dar, Patienten mit statischen und dynamischen Gleichgewichtsproblemen alternative Sinnesreize zur Erlangung eines stabilen Gleichgewichts zur Verfügung zu stellen, was zu einer Verbesserung ihrer Lebensqualität führt. Das Biofeedback-System erzeugt mittels am Kopf befestigter Signalwandler auditive, vibro-taktile und vibro-vestibuläre Sinneseindrücke. Die Ergebnisse sowohl an jungen als auch an älteren Probanden ergaben, dass mit Hilfe des Biofeedbacks eine bemerkenswerte 40-60%ige Reduktion des Körperschwankens erzielt werden konnt

    Can Medication Free, Treatment-Resistant, Depressed Patients Who Initially Respond to TMS Be Maintained Off Medications? A Prospective, 12-Month Multisite Randomized Pilot Study

    Get PDF
    AbstractBackgroundRepetitive transcranial magnetic stimulation (TMS) is efficacious for acute treatment of resistant major depressive disorder (MDD), but there is little information on maintenance TMS after acute response.Objective/hypothesisThis pilot feasibility study investigated 12-month outcomes comparing two maintenance TMS approaches – a scheduled, single TMS session delivered monthly (SCH) vs. observation only (OBS).MethodsAntidepressant-free patients with unipolar, non-psychotic, treatment-resistant MDD participated in a randomized, open-label, multisite trial. Patients meeting protocol-defined criteria for improvement after six weeks of acute TMS were randomized to SCH or OBS regimens. TMS reintroduction was available for symptomatic worsening; all patients remained antidepressant-free during the trial.ResultsSixty-seven patients enrolled in the acute phase, and 49 (73%) met randomization criteria. Groups were matched, although more patients in the SCH group had failed ≥2 antidepressants (p = .035). There were no significant group differences on any outcome measure. SCH patients had nonsignificantly longer time to first TMS reintroduction, 91 ± 66 days, vs. OBS, 77 ± 52 days; OBS patients were nonsignificantly more likely to need reintroduction (odds ratio = 1.21, 95% CI .38–3.89). Reintroduction lasted 14.3 ± 17.8 days (SCH) and 16.9 ± 18.9 days (OBS); 14/18 (78%) SCH and 17/27 (63%) OBS responded to reintroduction. Sixteen patients (32.7%) completed all 53 weeks of the study.ConclusionsMaintaining treatment-resistant depressed patients off medications with periodic TMS appears feasible in some cases. There was no statistical advantage of SCH vs. OBS, although SCH was associated with a nonsignificantly longer time to relapse. Those who initially respond to TMS have a strong chance of re-responding if relapse occurs

    Alterations in the cortical control of standing posture during varying levels of postural threat and task difficulty

    Get PDF
    Cortical excitability increases during the performance of more difficult postural tasks. However, it is possible that changes in postural threat associated with more difficult tasks may in themselves lead to alterations in the neural strategies underlying postural control. Therefore, the purpose of this study was to examine whether changes in postural threat are responsible for the alterations in corticospinal excitability and short-interval intracortical inhibition (SICI) that occur with increasing postural task difficulty. Fourteen adults completed three postural tasks (supported standing, free standing, or standing on an unstable board) at two surface heights (ground level or 3 m above ground). Single- and paired-pulse magnetic stimuli were applied to the motor cortex to compare soleus (SOL) and tibialis anterior (TA) test motor-evoked potentials (MEPs) and SICI between conditions. SOL and TA test MEPs increased from 0.35 ± 0.29 to 0.82 ± 0.41 mV (SOL) and from 0.64 ± 0.51 to 1.96 ±  1.45 mV (TA), respectively, whereas SICI decreased from 52.4 ± 17.2% to 39.6 ±  15.4% (SOL) and from 71.3 ± 17.7% to 50.3 ± 19.9% (TA) with increasing task difficulty. In contrast to the effects of task difficulty, only SOL test MEPs were smaller when participants stood at high (0.49 ± 0.29 mV) compared with low height (0.61 ±  0.40 mV). Because the presence of postural threat did not lead to any additional changes in the excitability of the motor corticospinal pathway and intracortical inhibition with increasing task difficulty, it seems unlikely that alterations in perceived threat are primarily responsible for the neurophysiological changes that are observed with increasing postural task difficulty.NEW & NOTEWORTHY We examined how task difficulty and postural threat influence the cortical control of posture. Results indicated that the motor corticospinal pathway and intracortical inhibition were modulated more by task difficulty than postural threat. Furthermore, because the presence of postural threat during the performance of various postural tasks did not lead to summative changes in motor-evoked potentials, alterations in perceived threat are not responsible for the neurophysiological changes that occur with increasing postural task difficulty

    Effect of d-cycloserine on fear extinction training in adults with social anxiety disorder

    Get PDF
    © 2019 Hofmann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Preclinical and clinical data have shown that D-cycloserine (DCS), a partial agonist at the N-methyl-d-aspartate receptor complex, augments the retention of fear extinction in animals and the therapeutic learning from exposure therapy in humans. However, studies with nonclinical human samples in de novo fear conditioning paradigms have demonstrated minimal to no benefit of DCS. The aim of this study was to evaluate the effects of DCS on the retention of extinction learning following de novo fear conditioning in a clinical sample. Eighty-one patients with social anxiety disorder were recruited and underwent a previously validated de novo fear conditioning and extinction paradigm over the course of three days. Of those, only 43 (53%) provided analyzable data. During conditioning on Day 1, participants viewed images of differently colored lamps, two of which were followed by with electric shock (CS+) and a third which was not (CS-). On Day 2, participants were randomly assigned to receive either 50 mg DCS or placebo, administered in a double-blind manner 1 hour prior to extinction training with a single CS+ in a distinct context. Day 3 consisted of tests of extinction recall and renewal. The primary outcome was skin conductance response to conditioned stimuli, and shock expectancy ratings were examined as a secondary outcome. Results showed greater skin conductance and expectancy ratings in response to the CS+ compared to CS- at the end of conditioning. As expected, this difference was no longer present at the end of extinction training, but returned at early recall and renewal phases on Day 3, showing evidence of return of fear. In contrast to hypotheses, DCS had no moderating influence on skin conductance response or expectancy of shock during recall or renewal phases. We did not find evidence of an effect of DCS on the retention of extinction learning in humans in this fear conditioning and extinction paradigm

    Early Radio and X-Ray Observations of the Youngest Nearby Type Ia Supernova PTF 11kly (SN 2011fe)

    Get PDF
    On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time.We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of Ṁ ≾ 10^(−8)(w/100 km s^(−1))M_☉ yr^(−1) from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia
    corecore