3,256 research outputs found
Nonclassical Degrees of Freedom in the Riemann Hamiltonian
The Hilbert-Polya conjecture states that the imaginary parts of the zeros of
the Riemann zeta function are eigenvalues of a quantum hamiltonian. If so,
conjectures by Katz and Sarnak put this hamiltonian in Altland and Zirnbauer's
universality class C. This implies that the system must have a nonclassical
two-valued degree of freedom. In such a system, the dominant primitive periodic
orbits contribute to the density of states with a phase factor of -1. This
resolves a previously mysterious sign problem with the oscillatory
contributions to the density of the Riemann zeros.Comment: 4 pages, no figures; v3-6 have minor corrections to v2, v2 has a more
complete solution of the sign problem than v
Aberration-like cusped focusing in the post-paraxial Talbot effect
We present an analysis of self-imaging in a regime beyond the paraxial, where
deviation from simple paraxial propagation causes apparent self-imaging
aberrations. The resulting structures are examples of aberration without rays
and are described analytically using post-paraxial theory. They are shown to
relate to, but surprisingly do not precisely replicate, a standard integral
representation of a diffraction cusp. Beyond the Talbot effect, this result is
significant as it illustrates that the effect of aberration -- as manifested in
the replacement of a perfect focus with a cusp-like pattern -- can occur as a
consequence of improving the paraxial approximation, rather than due to
imperfections in the optical system.Comment: 8 pages, 3 figures, IoP styl
Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007--2008 credit crisis
We study the cluster dynamics of multichannel (multivariate) time series by
representing their correlations as time-dependent networks and investigating
the evolution of network communities. We employ a node-centric approach that
allows us to track the effects of the community evolution on the functional
roles of individual nodes without having to track entire communities. As an
example, we consider a foreign exchange market network in which each node
represents an exchange rate and each edge represents a time-dependent
correlation between the rates. We study the period 2005-2008, which includes
the recent credit and liquidity crisis. Using dynamical community detection, we
find that exchange rates that are strongly attached to their community are
persistently grouped with the same set of rates, whereas exchange rates that
are important for the transfer of information tend to be positioned on the
edges of communities. Our analysis successfully uncovers major trading changes
that occurred in the market during the credit crisis.Comment: 8 pages, 6 figures, accepted for publication in Chao
Chaos and Quantum Thermalization
We show that a bounded, isolated quantum system of many particles in a
specific initial state will approach thermal equilibrium if the energy
eigenfunctions which are superposed to form that state obey {\it Berry's
conjecture}. Berry's conjecture is expected to hold only if the corresponding
classical system is chaotic, and essentially states that the energy
eigenfunctions behave as if they were gaussian random variables. We review the
existing evidence, and show that previously neglected effects substantially
strengthen the case for Berry's conjecture. We study a rarefied hard-sphere gas
as an explicit example of a many-body system which is known to be classically
chaotic, and show that an energy eigenstate which obeys Berry's conjecture
predicts a Maxwell--Boltzmann, Bose--Einstein, or Fermi--Dirac distribution for
the momentum of each constituent particle, depending on whether the wave
functions are taken to be nonsymmetric, completely symmetric, or completely
antisymmetric functions of the positions of the particles. We call this
phenomenon {\it eigenstate thermalization}. We show that a generic initial
state will approach thermal equilibrium at least as fast as
, where is the uncertainty in the total energy
of the gas. This result holds for an individual initial state; in contrast to
the classical theory, no averaging over an ensemble of initial states is
needed. We argue that these results constitute a new foundation for quantum
statistical mechanics.Comment: 28 pages in Plain TeX plus 2 uuencoded PS figures (included); minor
corrections only, this version will be published in Phys. Rev. E;
UCSB-TH-94-1
Cardiac magnetic resonance findings predict increased resource utilization in elective coronary artery bypass grafting
Morbidity following CABG (coronary artery bypass grafting) is difficult to predict and leads to increased healthcare costs. We hypothesized that pre-operative CMR (cardiac magnetic resonance) findings would predict resource utilization in elective CABG. Over a 12-month period, patients requiring elective CABG were invited to undergo CMR 1 day prior to CABG. Gadolinium-enhanced CMR was performed using a trueFISP inversion recovery sequence on a 1.5 tesla scanner (Sonata; Siemens). Clinical data were collected prospectively. Admission costs were quantified based on standardized actual cost/day. Admission cost greater than the median was defined as 'increased'. Of 458 elective CABG cases, 45 (10%) underwent pre-operative CMR. Pre-operative characteristics [mean (S.D.) age, 64 (9) years, mortality (1%) and median (interquartile range) admission duration, 7 (6–8) days] were similar in patients who did or did not undergo CMR. In the patients undergoing CMR, eight (18%) and 11 (24%) patients had reduced LV (left ventricular) systolic function by CMR [LVEF (LV ejection fraction) <55%] and echocardiography respectively. LE (late enhancement) with gadolinium was detected in 17 (38%) patients. The average cost/day was 19059 ($10891–157917). CMR LVEF {OR (odds ratio), 0.93 [95% CI (confidence interval), 0.87–0.99]; P=0.03} and SV (stroke volume) index [OR 1.07 (95% CI, 1.00–1.14); P=0.02] predicted increased admission cost. CMR LVEF (P=0.08) and EuroScore tended to predict actual admission cost (P=0.09), but SV by CMR (P=0.16) and LV function by echocardiography (P=0.95) did not. In conclusion, in this exploratory investigation, pre-operative CMR findings predicted admission duration and increased admission cost in elective CABG surgery. The cost-effectiveness of CMR in risk stratification in elective CABG surgery merits prospective assessment
Transition-State Interactions in a Promiscuous Enzyme: Sulfate and Phosphate Monoester Hydrolysis by Pseudomonas aeruginosa Arylsulfatase.
Pseudomonas aeruginosa arylsulfatase (PAS) hydrolyzes sulfate and, promiscuously, phosphate monoesters. Enzyme-catalyzed sulfate transfer is crucial to a wide variety of biological processes, but detailed studies of the mechanistic contributions to its catalysis are lacking. We present linear free energy relationships (LFERs) and kinetic isotope effects (KIEs) of PAS and analyses of active site mutants that suggest a key role for leaving group (LG) stabilization. In LFERs PASWT has a much less negative Brønsted coefficient (βleaving groupobs-Enz = -0.33) than the uncatalyzed reaction (βleaving groupobs = -1.81). This situation is diminished when cationic active site groups are exchanged for alanine. The considerable degree of bond breaking during the transition state (TS) is evidenced by an 18Obridge KIE of 1.0088. LFER and KIE data for several active site mutants point to leaving group stabilization by active site K375, in cooperation with H211. 15N KIEs and the increased sensitivity to leaving group ability of the sulfatase activity in neat D2O (Δβleaving groupH-D = +0.06) suggest that the mechanism for S-Obridge bond fission shifts, with decreasing leaving group ability, from charge compensation via Lewis acid interactions toward direct proton donation. 18Ononbridge KIEs indicate that the TS for PAS-catalyzed sulfate monoester hydrolysis has a significantly more associative character compared to the uncatalyzed reaction, while PAS-catalyzed phosphate monoester hydrolysis does not show this shift. This difference in enzyme-catalyzed TSs appears to be the major factor favoring specificity toward sulfate over phosphate esters by this promiscuous hydrolase, since other features are either too similar (uncatalyzed TS) or inherently favor phosphate (charge).BBSRC BB/I004327/1
EPSRC EP/E019390/1
Statistical Analysis of Magnetic Field Spectra
We have calculated and statistically analyzed the magnetic-field spectrum
(the ``B-spectrum'') at fixed electron Fermi energy for two quantum dot systems
with classically chaotic shape. This is a new problem which arises naturally in
transport measurements where the incoming electron has a fixed energy while one
tunes the magnetic field to obtain resonance conductance patterns. The
``B-spectrum'', defined as the collection of values at which
conductance takes extremal values, is determined by a quadratic
eigenvalue equation, in distinct difference to the usual linear eigenvalue
problem satisfied by the energy levels. We found that the lower part of the
``B-spectrum'' satisfies the distribution belonging to Gaussian Unitary
Ensemble, while the higher part obeys a Poisson-like behavior. We also found
that the ``B-spectrum'' fluctuations of the chaotic system are consistent with
the results we obtained from random matrices
Stroke following percutaneous coronary intervention : type-specific incidence, outcomes and determinants seen by the British Cardiovascular Intervention Society 2007-12
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: [email protected] reviewedPostprin
Toward Fulfilling the Promise of Molecular Medicine in Fragile X
Fragile X syndrome (FXS) is the most common inherited form of mental retardation and a leading known cause of autism. It is caused by loss of expression of the fragile X mental retardation protein (FMRP), an RNA-binding protein that negatively regulates protein synthesis. In neurons, multiple lines of evidence suggest that protein synthesis at synapses is triggered by activation of group 1 metabotropic glutamate receptors (Gp1 mGluRs) and that many functional consequences of activating these receptors are altered in the absence of FMRP. These observations have led to the theory that exaggerated protein synthesis downstream of Gp1 mGluRs is a core pathogenic mechanism in FXS. This excess can be corrected by reducing signaling by Gp1 mGluRs, and numerous studies have shown that inhibition of mGluR5, in particular, can ameliorate multiple mutant phenotypes in animal models of FXS. Clinical trials based on this therapeutic strategy are currently under way. FXS is therefore poised to be the first neurobehavioral disorder in which corrective treatments have been developed from the bottom up: from gene identification to pathophysiology in animals to novel therapeutics in humans. The insights gained from FXS and other autism-related single-gene disorders may also assist in identifying molecular mechanisms and potential treatment approaches for idiopathic autism.Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.)National Institute of Mental Health (U.S.)FRAXA Research Foundatio
- …