20 research outputs found

    Toxicity potential of heartwood extractives from two mulberry species against Heterotermes indicola

    Get PDF
    Choice and no-choice tests were run to evaluate natural resistance of the woods of two Morus species (Morus alba and Morus nigra) against the subterranean, by Heterotermes indicola under field conditions. Toxicity, antifeedant and repellency potential of the heartwood extractives was also investigated under laboratory conditions. Heartwood extractives were removed from wood shavings by using methanol or an ethanol: toluene (2:1) mixture. Results of choice and no-choice tests with sap and heartwood blocks exposed to termites, showed that both mulberry species were resistant to termites but in comparison. Morus alba wood was more resistant than Morus nigra to termite feeding as it showed <5 % weight loss after 90 days. Termites exhibited a concentration dependent mortality after exposure to either mulberry species’ heartwood extractives. The highest termite mortality occurred after termites were exposed to filter paper treated with Morus alba extractives at a concentration of 5%. . At this concentration, antifeedancy and repellency were calculated to be 91.67 and 84 %respectively. . Our results also showed that extractives from either mulberry species imparted resistance to vacuum-pressure treated non-durable Populus deltoides wood. Termite mortality was greater than 75 % after feeding on Populus deltoides wood treated with extractives from Morus alba. Solvent only (methanol) treated Populus deltoides controls, showed a minimum weight loss of 2.69 % after 28 days. These results suggest that Morus alba extractives have antitermitic properties and may be potentially useful in the development of environment friendly termiticides

    Northeastern united states species treated with copper-based preservatives: Durability in mississippi stake tests

    Get PDF
    This paper reports on the ground-contact durability of lesser-used wood species of the northeastern United States after treatment with copper-based preservatives. Stakes (19 by 19 by 457 mm) cut from balsam-fir (Abies balsamea), eastern hemlock (Tsuga canadensis), eastern spruce (mixture of Picea glauca, Picea mariana and Picea rubens), red maple (Acer rubrum) or eastern white pine (Pinus strobus) were treated with one of four concentrations of chromated copper arsenate type C (CCA-C), copper citrate (CC), alkaline copper quat type C (ACQ-C) or copper azole type A (CBA-A) and placed into the ground at a test site in southern Mississippi. Similarly treated southern pine (Pinus spp.) stakes were included for comparison. The stakes were rated for decay and termite attack after 1, 2, 3, 4, 5, 8, 10 and 12 years. Eastern white pine and incised eastern hemlock and balsam-fir had durability similar to southern pine when treated with CCA or the other copper-based preservatives. Eastern spruce was less durable than the other softwood species, apparently because of low preservative uptake. Red maple had the least durability at all retentions and for all preservatives. This study indicates that several northeastern softwoods can be adequately durable when pressure-treated with CCA-C or copper-based preservatives

    Critical Review on the Use of Extractives of Naturally Durable Woods as Natural Wood Protectants

    Get PDF
    Simple Summary Extractives, the non-structural component of woody biomass, are frequently targeted for their biocidal potential due to their evolutionary success in deterring pests in both standing trees and downed woody debris. Effective extractive utilization also offers an alternative product stream, where extractives are removed from the woody biomass that can further be used as feedstock for downstream processes (i.e., pulping, nanocellulose production, and biochar) once the extractives are removed. This review aims to provide details on prior studies using wood extractives as wood protectants, highlight the limitations to this approach, and discuss the research opportunities. Abstract Naturally durable wood pre-dates preservative-treated wood and has been demonstrated to offer a suitable service life for certain applications where preservative-treated wood is not feasible. Heartwood extractives have been demonstrated to impart bio-deteriorative resistance to naturally durable wood species. These extractives are typically found in the heartwood of living trees and are produced either by the death of parenchyma cells or as the result of external stimuli. The mechanisms of natural durability are not well understood, as heartwood extractives can be extremely variable in their distribution, composition, and efficacy in both living and harvested trees. The underlying complexity of heartwood extractives has hindered their standardization in residential building codes for use as wood preservatives. The use of naturally durable lumber is not always feasible, as woods with exceptionally durable heartwood do not typically yield lumber with acceptable machining properties. A potential approach to overcome the inherent difficulty in establishing guidelines for the appropriate use of naturally durable wood is to focus solely on the extractives as a source of bioactive protectants based on the strategies used on living and dead wood to repel the agents of biodeterioration. This critical review summarizes the relevant literature on naturally durable woods, their extractives, and their potential use as bio-inspired wood protectants. An additional discussion will be aimed at underscoring the past difficulties in adopting this approach and how to overcome the future hurdles

    Toxicity potential of heartwood extractives from two mulberry species against "Heterotermes indicola"

    Get PDF
    Choice and no-choice tests were run to evaluate natural resistance of the woods of two Morus species (Morus alba and Morus nigra) against the subterranean, by Heterotermes indicola under field conditions. Toxicity, antifeedant and repellency potential of the heartwood extractives was also investigated under laboratory conditions. Heartwood extractives were removed from wood shavings by using methanol or an ethanol: toluene (2:1) mixture. Results of choice and no-choice tests with sap and heartwood blocks exposed to termites, showed that both mulberry species were resistant to termites but in comparison. Morus alba wood was more resistant than Morus nigra to termite feeding as it showed <5 % weight loss after 90 days. Termites exhibited a concentration dependent mortality after exposure to either mulberry species’ heartwood extractives. The highest termite mortality occurred after termites were exposed to filter paper treated with Morus alba extractives at a concentration of 5%. . At this concentration, antifeedancy and repellency were calculated to be 91.67 and 84 %respectively. . Our results also showed that extractives from either mulberry species imparted resistance to vacuum-pressure treated non-durable Populus deltoides wood. Termite mortality was greater than 75 % after feeding on Populus deltoides wood treated with extractives from Morus alba. Solvent only (methanol) treated Populus deltoides controls, showed a minimum weight loss of 2.69 % after 28 days. These results suggest that Morus alba extractives have antitermitic properties and may be potentially useful in the development of environment friendly termiticides

    ATR-FTIR Study of Alaska Yellow Cedar Extractives and Relationship with Their Natural Durability

    No full text
    New approaches for assessing wood durability are needed to help categorize decay resistance as timber utilization shifts towards plantations or native forest regrowth that may be less durable than original native forest resources. This study evaluated attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy combined with principal component analysis (PCA) for distinguishing between groups of Alaska yellow cedar (Cupressus nootkatensis) wood for susceptibility to two decay fungi (Gloeophyllum trabeum and Rhodonia placenta) and the eastern subterranean termite (Reticulitermes flavipes). Alaska yellow cedar durability varied with test organisms, but the majority of samples were highly resistant to fungal and termite attack. Weight losses and extractives yield using sequential extractions (toluene:ethanol &gt; ethanol &gt; hot water) showed moderate to weak relationships. PCA analysis revealed limited ability to distinguish amongst levels of wood durability to all tested organisms. The absence of non-resistant samples may have influenced the ability of the chemometric methods to accurately categorize durability

    ATR-FTIR Study of Alaska Yellow Cedar Extractives and Relationship with Their Natural Durability

    No full text
    New approaches for assessing wood durability are needed to help categorize decay resistance as timber utilization shifts towards plantations or native forest regrowth that may be less durable than original native forest resources. This study evaluated attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy combined with principal component analysis (PCA) for distinguishing between groups of Alaska yellow cedar (Cupressus nootkatensis) wood for susceptibility to two decay fungi (Gloeophyllum trabeum and Rhodonia placenta) and the eastern subterranean termite (Reticulitermes flavipes). Alaska yellow cedar durability varied with test organisms, but the majority of samples were highly resistant to fungal and termite attack. Weight losses and extractives yield using sequential extractions (toluene:ethanol > ethanol > hot water) showed moderate to weak relationships. PCA analysis revealed limited ability to distinguish amongst levels of wood durability to all tested organisms. The absence of non-resistant samples may have influenced the ability of the chemometric methods to accurately categorize durability

    Northeastern United States species treated with copper-based preservatives: Durability in Mississippi stake tests

    Get PDF
    This paper reports on the ground-contact durability of lesser-used wood species of the northeastern United States after treatment with copper-based preservatives. Stakes (19 by 19 by 457 mm) cut from balsam-fir (Abies balsamea), eastern hemlock (Tsuga canadensis), eastern spruce (mixture of Picea glauca, Picea mariana and Picea rubens), red maple (Acer rubrum) or eastern white pine (Pinus strobus) were treated with one of four concentrations of chromated copper arsenate type C (CCA-C), copper citrate (CC), alkaline copper quat type C (ACQ-C) or copper azole type A (CBA-A) and placed into the ground at a test site in southern Mississippi. Similarly treated southern pine (Pinus spp.) stakes were included for comparison. The stakes were rated for decay and termite attack after 1, 2, 3, 4, 5, 8, 10 and 12 years. Eastern white pine and incised eastern hemlock and balsam-fir had durability similar to southern pine when treated with CCA or the other copper-based preservatives. Eastern spruce was less durable than the other softwood species, apparently because of low preservative uptake. Red maple had the least durability at all retentions and for all preservatives. This study indicates that several northeastern softwoods can be adequately durable when pressure-treated with CCA-C or copper-based preservatives
    corecore