2,529 research outputs found
Bridging the gap between social tagging and semantic annotation: E.D. the Entity Describer
Semantic annotation enables the development of efficient computational methods for analyzing and interacting with information, thus maximizing its value. With the already substantial and constantly expanding data generation capacity of the life sciences as well as the concomitant increase in the knowledge distributed in scientific articles, new ways to produce semantic annotations of this information are crucial. While automated techniques certainly facilitate the process, manual annotation remains the gold standard in most domains. In this manuscript, we describe a prototype mass-collaborative semantic annotation system that, by distributing the annotation workload across the broad community of biomedical researchers, may help to produce the volume of meaningful annotations needed by modern biomedical science. We present E.D., the Entity Describer, a mashup of the Connotea social tagging system, an index of semantic web-accessible controlled vocabularies, and a new public RDF database for storing social semantic annotations
Virulence- and signaling-associated genes display a preference for long 3′UTRs during rice infection and metabolic stress in the rice blast fungus
Generation of mRNA isoforms by alternative polyadenylation (APA) and their involvement in regulation of fungal cellular processes, including virulence, remains elusive. Here, we investigated genome‐wide polyadenylation site (PAS) selection in the rice blast fungus to understand how APA regulates pathogenicity. More than half of Magnaporthe oryzae transcripts undergo APA and show novel motifs in their PAS region. Transcripts with shorter 3′UTRs are more stable and abundant in polysomal fractions, suggesting they are being translated more efficiently. Importantly, rice colonization increases the use of distal PASs of pathogenicity genes, especially those participating in signalling pathways like 14‐3‐3B, whose long 3′UTR is required for infection. Cleavage factor I (CFI) Rbp35 regulates expression and distal PAS selection of virulence and signalling‐associated genes, tRNAs and transposable elements, pointing its potential to drive genomic rearrangements and pathogen evolution. We propose a noncanonical PAS selection mechanism for Rbp35 that recognizes UGUAH, unlike humans, without CFI25. Our results showed that APA controls turnover and translation of transcripts involved in fungal growth and environmental adaptation. Furthermore, these data provide useful information for enhancing genome annotations and for cross‐species comparisons of PASs and PAS usage within the fungal kingdom and the tree of life
Dynamical Mass Estimates for the Halo of M31 from Keck Spectroscopy
The last few months have seen the measurements of the radial velocities of
all of the dwarf spheroidal companions to the Andromeda galaxy (M31) using the
spectrographs (HIRES and LRIS) on the Keck Telescope. This paper summarises the
data on the radial velocities and distances for all the companion galaxies and
presents new dynamical modelling to estimate the mass of extended halo of M31.
The best fit values for the total mass of M31 are between 7 and 10 x 10^{11}
solar masses, depending on the details of the modelling. The mass estimate is
accompanied by considerable uncertainty caused by the smallness of the dataset;
for example, the upper bound on the total mass is roughly 24 x 10^{11} solar
masses, while the lower bound is about 3 x 10^{11} solar masses. These values
are less than the most recent estimates of the most likely mass of the Milky
Way halo. Bearing in mind all the uncertainties, a fair conclusion is that the
M31 halo is roughly as massive as that of the Milky Way halo. There is no
dynamical evidence for the widely held belief that M31 is more massive -- it
may even be less massive.Comment: In press, The Astrophysical Journal (Letters
Recommended from our members
RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content
The cell walls of wheat (Triticum aestivum) starchy endosperm are dominated by arabinoxylan (AX), accounting for 65% to 70% of the polysaccharide content. Genes within two glycosyl transferase (GT) families, GT43 (IRREGULAR XYLEM9 [IRX9] and IRX14) and GT47 (IRX10), have previously been shown to be involved in the synthesis of the xylan backbone in Arabidopsis, and close homologs of these have been implicated in the synthesis of xylan in other species. Here, homologs of IRX10 TaGT47_2 and IRX9 TaGT43_2, which are highly expressed in wheat starchy endosperm cells, were suppressed by RNA interference (RNAi) constructs driven by a starchy endosperm-specific promoter. The total amount of AX was decreased by 40% to 50% and the degree of arabinosylation was increased by 25% to 30% in transgenic lines carrying either of the transgenes. The cell walls of starchy endosperm in sections of grain from TaGT43_2 and TaGT47_2 RNAi transgenics showed decreased immunolabeling for xylan and arabinoxylan epitopes and approximately 50% decreased cell wall thickness compared with controls. The proportion of AX that was water soluble was not significantly affected, but average AX polymer chain length was decreased in both TaGT43_2 and TaGT47_2 RNAi transgenics. However, the long AX chains seen in controls were absent in TaGT43_2 RNAi transgenics but still present in TaGT47_2 RNAi transgenics. The results support an emerging picture of IRX9-like and IRX10-like proteins acting as key components in the xylan synthesis machinery in both dicots and grasses. Since AX is the main component of dietary fiber in wheat foods, the TaGT43_2 and TaGT47_2 genes are of major importance to human nutrition
Interoperability and FAIRness through a novel combination of Web technologies
Data in the life sciences are extremely diverse and are stored in a broad spectrum of repositories ranging from those designed for particular data types (such as KEGG for pathway data or UniProt for protein data) to those that are general-purpose (such as FigShare, Zenodo, Dataverse or EUDAT). These data have widely different levels of sensitivity and security considerations. For example, clinical observations about genetic mutations in patients are highly sensitive, while observations of species diversity are generally not. The lack of uniformity in data models from one repository to another, and in the richness and availability of metadata descriptions, makes integration and analysis of these data a manual, time-consuming task with no scalability. Here we explore a set of resource-oriented Web design patterns for data discovery, accessibility, transformation, and integration that can be implemented by any general- or special-purpose repository as a means to assist users in finding and reusing their data holdings. We show that by using off-the-shelf technologies, interoperability can be achieved atthe level of an individual spreadsheet cell. We note that the behaviours of this architecture compare favourably to the desiderata defined by the FAIR Data Principles, and can therefore represent an exemplar implementation of those principles. The proposed interoperability design patterns may be used to improve discovery and integration of both new and legacy data, maximizing the utility of all scholarly outputs
The FAIR Guiding Principle for Scientific Data Management and Stewardship:Comment
There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community
Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures
The combination of large thickness ( m), large--area uniformity (75
mm diameter), high growth rate (up to 0.4 m/min) in assemblies of
complex--shaped nanowires on lithographically defined patterns has been
achieved for the first time. The nanoscale and the microscale have thus been
blended together in sculptured thin films with transverse architectures.
SiO () nanowires were grown by electron--beam evaporation onto
silicon substrates both with and without photoresist lines (1--D arrays) and
checkerboard (2--D arrays) patterns. Atomic self--shadowing due to
oblique--angle deposition enables the nanowires to grow continuously, to change
direction abruptly, and to maintain constant cross--sectional diameter. The
selective growth of nanowire assemblies on the top surfaces of both 1--D and
2--D arrays can be understood and predicted using simple geometrical shadowing
equations.Comment: 17 pages, 9 figure
Molecular characterization of a novel ssRNA ourmia-like virus from the rice blast fungus Magnaporthe oryzae
In this study we characterize a novel positive and single stranded RNA (ssRNA) mycovirus isolated from the rice field isolate of Magnaporthe oryzae Guy11. The ssRNA contains a single open reading frame (ORF) of 2,373 nucleotides in length and encodes an RNA-dependent RNA polymerase (RdRp) closely related to ourmiaviruses (plant viruses) and ourmia-like mycoviruses. Accordingly, we name this virus Magnaporthe oryzae ourmia-like virus 1 (MOLV1). Although phylogenetic analysis suggests that MOLV1 is closely related to ourmia and ourmia-like viruses, it has some features never reported before within the Ourmiavirus genus. 3' RLM-RACE (RNA ligase-mediated rapid amplification of cDNA ends) and extension poly(A) tests (ePAT) suggest that the MOLV1 genome contains a poly(A) tail whereas the three cytosine and the three guanine residues present in 5' and 3' untranslated regions (UTRs) of ourmia viruses are not observed in the MOLV1 sequence. The discovery of this novel viral genome supports the hypothesis that plant pathogenic fungi may have acquired this type of viruses from their host plants
Overview of the Far Ultraviolet Spectroscopic Explorer Mission
The Far Ultraviolet Spectroscopic Explorer satellite observes light in the
far-ultraviolet spectral region, 905 - 1187 A with high spectral resolution.
The instrument consists of four coaligned prime-focus telescopes and Rowland
spectrographs with microchannel plate detectors. Two of the telescope channels
use Al:LiF coatings for optimum reflectivity from approximately 1000 to 1187 A
and the other two use SiC coatings for optimized throughput between 905 and
1105 A. The gratings are holographically ruled to largely correct for
astigmatism and to minimize scattered light. The microchannel plate detectors
have KBr photocathodes and use photon counting to achieve good quantum
efficiency with low background signal. The sensitivity is sufficient to examine
reddened lines of sight within the Milky Way as well as active galactic nuclei
and QSOs for absorption line studies of both Milky Way and extra-galactic gas
clouds. This spectral region contains a number of key scientific diagnostics,
including O VI, H I, D I and the strong electronic transitions of H2 and HD.Comment: To appear in FUSE special issue of the Astrophysical Journal Letters.
6 pages + 4 figure
- …
