66 research outputs found

    The formal verification of a pipelined double-precision IEEE floating-point multiplier

    Get PDF
    Floating-point circuits are notoriously difficult to design and verify. For verification, simulation barely offers adequate coverage, conventional model-checking techniques are infeasible, and theorem-proving based verification is not sufficiently mature. In this paper we present the formal verification of a radix-eight, pipelined, IEEE double-precision floating-point multiplier. The verification was carried out using a mixture of model-checking and theorem-proving techniques in the Voss hardware verification system. By combining model-checking and theorem-proving we were able to build on the strengths of both areas and achieve significant results with a reasonable amount of effort.

    ASIC Benchmarking of Round 2 Candidates in the NIST Lightweight Cryptography Standardization Process

    Get PDF
    This report presents area, throughput, and energy results for synthesizing the NIST Lightweight Cryptography Round 2 candidates on five ASIC cell libraries using two different synthesis tool suites

    Efficient Hardware Implementations of the Warbler Pseudorandom Number Generator

    Get PDF
    Pseudorandom number generators (PRNGs) are very important for EPC Class 1 Generation 2 (EPC C1 G2) Radio Frequency Identification (RFID) systems. A PRNG is able to provide a 16-bit random number that is used in many commands of the EPC C1 G2 standard, and it can also be used in future security extensions of the EPC C1 G2 standard, such as mutual authentication protocols between the readers and tags. In this paper, we investigate efficient ASIC hardware implementations of Warbler (a lightweight PRNG), and demonstrate that Warbler can meet the area and power consumption requirements in passive RFID systems. Warbler is built upon three nonlinear feedback shift registers (NLFSRs) and four WG-5 transformation modules. We employ two design options to implement Warbler and three different compilation methods to further optimize the area, maximum operating frequency, and power consumption. We can achieve an area of 498 GEs after the place and route phase in a CMOS 65nm ASIC, with a maximum frequency of 1430 MHz and a total power consumption of 1.239uW at 100 KHz. Accordingly, an area of 534 GEs after the place and route phase, with a maximum frequency of 250 MHz and a total power consumption of 0.296 uW at 100 KHz can be obtained in a CMOS 130nm ASIC. Our results show that the LFSR counter based design is better than the binary counter-based one in terms of area and power consumption. In addition, we show that the areas of WG-5 transformation look-up tables depend on the specific decimation values

    The Simeck Family of Lightweight Block Ciphers

    Get PDF
    Two lightweight block cipher families, SIMON and SPECK, have been proposed by researchers from the NSA recently. In this paper, we introduce Simeck, a new family of lightweight block ciphers that combines the good design components from both SIMON and SPECK, in order to devise even more compact and efficient block ciphers. For Simeck32/64, we can achieve 505 GEs (before the Place and Route phase) and 549 GEs (after the Place and Route phase), with the power consumption of 0.417 μW\mu W in CMOS 130nm ASIC, and 454 GEs (before the Place and Route phase) and 488 GEs (after the Place and Route phase), with the power consumption of 1.292 μW\mu W in CMOS 65nm ASIC. Furthermore, all of the instances of Simeck are smaller than the ones of hardware-optimized cipher SIMON in terms of area and power consumption in both CMOS 130nm and CMOS 65nm techniques. In addition, we also give the security evaluation of Simeck with respect to many traditional cryptanalysis methods, including differential attacks, linear attacks, impossible differential attacks, meet-in-the-middle attacks, and slide attacks. Overall, all of the instances of Simeck can satisfy the area, power, and throughput requirements in passive RFID tags

    Formal Verification of an Iterative Low-Power x86 Floating-Point Multiplier with Redundant Feedback

    Full text link
    We present the formal verification of a low-power x86 floating-point multiplier. The multiplier operates iteratively and feeds back intermediate results in redundant representation. It supports x87 and SSE instructions in various precisions and can block the issuing of new instructions. The design has been optimized for low-power operation and has not been constrained by the formal verification effort. Additional improvements for the implementation were identified through formal verification. The formal verification of the design also incorporates the implementation of clock-gating and control logic. The core of the verification effort was based on ACL2 theorem proving. Additionally, model checking has been used to verify some properties of the floating-point scheduler that are relevant for the correct operation of the unit.Comment: In Proceedings ACL2 2011, arXiv:1110.447

    Subsurface Geometry of the San Andreas Fault in Southern California: Results from the Salton Seismic Imaging Project (SSIP) and Strong Ground Motion Expectations

    Get PDF
    The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a fault‐crossing profile just north of the Salton Sea, sedimentary basin depth reaches 4 km southwest of the SAF. On our line 6, a fault‐crossing profile at the north end of the Coachella Valley, sedimentary basin depth is ∼2–3  km and centered on the central, most active trace of the SAF. Subsurface geometry of the SAF and nearby faults along these two lines is determined using a new method of seismic‐reflection imaging, combined with potential‐field studies and earthquakes. Below a 6–9 km depth range, the SAF dips ∼50°–60° NE, and above this depth range it dips more steeply. Nearby faults are also imaged in the upper 10 km, many of which dip steeply and project to mapped surface fault traces. These secondary faults may join the SAF at depths below about 10 km to form a flower‐like structure. In Appendix D, we show that rupture on a northeast‐dipping SAF, using a single plane that approximates the two dips seen in our study, produces shaking that differs from shaking calculated for the Great California ShakeOut, for which the southern SAF was modeled as vertical in most places: shorter‐period (T<1  s) shaking is increased locally by up to a factor of 2 on the hanging wall and is decreased locally by up to a factor of 2 on the footwall, compared to shaking calculated for a vertical fault

    Latency Antigen α-Crystallin Based Vaccination Imparts a Robust Protection against TB by Modulating the Dynamics of Pulmonary Cytokines

    Get PDF
    BACKGROUND: Efficient control of tuberculosis (TB) requires development of strategies that can enhance efficacy of the existing vaccine Mycobacterium bovis Bacille Calmette Guerin (BCG). To date only a few studies have explored the potential of latency-associated antigens to augment the immunogenicity of BCG. METHODS/PRINCIPAL FINDINGS: We evaluated the protective efficacy of a heterologous prime boost approach based on recombinant BCG and DNA vaccines targeting α-crystallin, a prominent latency antigen. We show that "rBCG prime-DNA boost" strategy (R/D) confers a markedly superior protection along with reduced pathology in comparison to BCG vaccination in guinea pigs (565 fold and 45 fold reduced CFU in lungs and spleen, respectively, in comparison to BCG vaccination). In addition, R/D regimen also confers enhanced protection in mice. Our results in guinea pig model show a distinct association of enhanced protection with an increased level of interleukin (IL)12 and a simultaneous increase in immuno-regulatory cytokines such as transforming growth factor (TGF)β and IL10 in lungs. The T cell effector functions, which could not be measured in guinea pigs due to technical limitations, were characterized in mice by multi-parameter flow cytometry. We show that R/D regimen elicits a heightened multi-functional CD4 Th1 cell response leading to enhanced protection. CONCLUSIONS/SIGNIFICANCE: These results clearly indicate the superiority of α-crystallin based R/D regimen over BCG. Our observations from guinea pig studies indicate a crucial role of IL12, IL10 and TGFβ in vaccine-induced protection. Further, characterization of T cell responses in mice demonstrates that protection against TB is predictable by the frequency of CD4 T cells simultaneously producing interferon (IFN)γ, tumor necrosis factor (TNF)α and IL2. We anticipate that this study will not only contribute toward the development of a superior alternative to BCG, but will also stimulate designing of TB vaccines based on latency antigens

    The common marmoset genome provides insight into primate biology and evolution

    Get PDF
    We report the whole-genome sequence of the common marmoset (Callithrix jacchus). The 2.26-Gb genome of a female marmoset was assembled using Sanger read data (6×) and a whole-genome shotgun strategy. A first analysis has permitted comparison with the genomes of apes and Old World monkeys and the identification of specific features that might contribute to the unique biology of this diminutive primate, including genetic changes that may influence body size, frequent twinning and chimerism. We observed positive selection in growth hormone/insulin-like growth factor genes (growth pathways), respiratory complex I genes (metabolic pathways), and genes encoding immunobiological factors and proteases (reproductive and immunity pathways). In addition, both protein-coding and microRNA genes related to reproduction exhibited evidence of rapid sequence evolution. This genome sequence for a New World monkey enables increased power for comparative analyses among available primate genomes and facilitates biomedical research application. © 2014 Nature America, Inc

    Genome-Wide Population-Based Association Study of Extremely Overweight Young Adults – The GOYA Study

    Get PDF
    Background: Thirty-two common variants associated with body mass index (BMI) have been identified in genome-wide association studies, explaining ~1.45% of BMI variation in general population cohorts. We performed a genome-wide association study in a sample of young adults enriched for extremely overweight individuals. We aimed to identify new loci associated with BMI and to ascertain whether using an extreme sampling design would identify the variants known to be associated with BMI in general populations. Methodology/Principal Findings: From two large Danish cohorts we selected all extremely overweight young men and women (n = 2,633), and equal numbers of population-based controls (n = 2,740, drawn randomly from the same populations as the extremes, representing ~212,000 individuals). We followed up novel (at the time of the study) association signals (
    corecore