265 research outputs found

    Discovery of a New Soft Gamma Repeater, SGR 1627-41

    Get PDF
    We report the discovery of a new soft gamma repeater (SGR), SGR 1627-41, and present BATSE observations of the burst emission and BeppoSAX NFI observations of the probable persistent X-ray counterpart to this SGR. All but one burst spectrum are well fit by an optically thin thermal bremsstrahlung (OTTB) model with kT values between 25 and 35 keV. The spectrum of the X-ray counterpart, SAX J1635.8-4736, is similar to that of other persistent SGR X-ray counterparts. We find weak evidence for a periodic signal at 6.41 s in the light curve for this source. Like other SGRs, this source appears to be associated with a young supernova remnant G337.0-0.1. Based upon the peak luminosities of bursts observed from this SGR, we find a lower limit on the dipole magnetic field of the neutron star B_dipole > 5 * 10^14 Gauss.Comment: 5 pages, 4 figures, submitted to ApJ Letter

    First results of the BATSE/COMPTEL/NMSU rapid burst response campaign

    Get PDF
    The Imaging Compton Telescope (COMPTEL) on board the Compton Gamma Ray Observatory regularly observes gamma‐ray bursts which occur inside the instrument’s ∌1 sr field‐of‐view. COMPTEL images bursts in the 0.75–30 MeV energy range with a typical location accuracy of 1–3 degrees, depending on burst strength, position, duration, and spectrum. COMPTEL’s imaging capability has been exploited in order to search for fading gamma‐ray burst counterparts at other wavelengths through the establishment of a BATSE/COMPTEL/NMSU rapid burst response campaign. This campaign utilizes near real‐time identification and preliminary burst location by BATSE, accelerated COMPTEL imaging, and a world‐wide network of observers to search COMPTEL error boxes as quickly as possible. Timely, deep searches for lingering counterpart emission of several bursts per year are the realized goal of this campaign. During its first year of operation, the rapid response program has been successfully applied to two strong bursts: GRB 930131 and GRB 930309. These bursts were imaged in record time only hours after their occurrence. Subsequently, several observations were made at radio and optical observatories world‐wide

    Semaphorin-Plexin Signaling Guides Patterning of the Developing Vasculature

    Get PDF
    AbstractMajor vessels of the vertebrate circulatory system display evolutionarily conserved and reproducible anatomy, but the cues guiding this stereotypic patterning remain obscure. In the nervous system, axonal pathways are shaped by repulsive cues provided by ligands of the semaphorin family that are sensed by migrating neuronal growth cones through plexin receptors. We show that proper blood vessel pathfinding requires the endothelial receptor PlexinD1 and semaphorin signals, and we identify mutations in plexinD1 in the zebrafish vascular patterning mutant out of bounds. These results reveal the fundamental conservation of repulsive patterning mechanisms between axonal migration in the central nervous system and vascular endothelium during angiogenesis

    Probing the Optical Dynamics of Quantum Emitters in Hexagonal Boron Nitride

    Full text link
    Hexagonal boron nitride is a van der Waals material that hosts visible-wavelength quantum emitters at room temperature. However, experimental identification of the quantum emitters' electronic structure is lacking, and key details of their charge and spin properties remain unknown. Here, we probe the optical dynamics of quantum emitters in hexagonal boron nitride using photon emission correlation spectroscopy. Several quantum emitters exhibit ideal single-photon emission with noise-limited photon antibunching, g(2)(0)=0g^{(2)}(0)=0. The photoluminescence emission lineshapes are consistent with individual vibronic transitions. However, polarization-resolved excitation and emission suggests the role of multiple optical transitions, and photon emission correlation spectroscopy reveals complicated optical dynamics associated with excitation and relaxation through multiple electronic excited states. We compare the experimental results to quantitative optical dynamics simulations, develop electronic structure models that are consistent with the observations, and discuss the results in the context of ab initio theoretical calculations.Comment: 31 pages, 16 figures, 6 table

    When Does an Episode of Care for Cancer Begin?

    Get PDF
    Little is known about the medical care resources devoted to diagnosing and treating cancer-related symptoms prior to a definitive cancer diagnosis. Previous research using SEER-Medicare data to measure incremental costs and utilization associated with cancer started with the date of diagnosis. We hypothesized that health care use increases prior to diagnosis of a new primary cancer

    Adherence to surveillance care guidelines after breast and colorectal cancer treatment with curative intent

    Get PDF
    Evidence-based guidelines recommend routine surveillance, including office visits and testing, to detect new and recurrent disease among breast and colorectal cancer survivors. The extent to which surveillance practice is consistent with guideline recommendations or may vary by age is not known

    Beam test results for the FiberGLAST instrument

    Get PDF
    The FiberGLAST scintillating fiber telescope is a large-area instrument concept for NASA\u27s GLAST program. The detector is designed for high-energy gamma-ray astronomy, and uses plastic scintillating fibers to combine a photon pair tracking telescope and a calorimeter into a single instrument. A small prototype detector has been tested with high energy photons at the Thomas Jefferson National Accelerator Facility. We report on the result of this beam test, including scintillating fiber performance, photon track reconstruction, angular resolution, and detector efficiency

    Development and testing of a fiber/multianode photomultiplier system for use on FiberGLAST

    Get PDF
    A scintillating fiber detector is currently being studied for the NASA Gamma-Ray Large Area Space Telescope (GLAST) mission. This detector utilizes modules composed of a thin converter sheet followed by an x, y plane of scintillating fibers to examine the shower of particles created by high energy gamma-rays interacting in the converter material. The detector is composed of a tracker with 90 such modular planes and a calorimeter with 36 planes. The two major component of this detector are the scintillating fibers and their associated photodetectors. Here we present current status of development and test result of both of these. The Hamamatsu R5900-00-M64 multianode photomultiplier tube (MAPMT) is the baseline readout device. A characterization of this device has been performed including noise, cross- talk, gain variation, vibration, and thermal/vacuum test. A prototype fiber/MAPMT system has been tested at the Center for Advanced Microstructures and Devices at Louisiana State University with a photon beam and preliminary results are presented

    Estimation of GRB detection by FiberGLAST

    Get PDF
    FiberGLAST is one of several instrument concepts being developed for possible inclusion as the primary Gamma-ray Large Area Space Telescope (GLAST) instrument. The predicted FiberGLAST effective area is more than 12,000 cm2 for energies between 30 MeV and 300 GeV, with a field of view that is essentially flat from 0°–80°. The detector will achieve a sensitivity more than 10 times that of EGRET. We present results of simulations that illustrate the sensitivity of FiberGLAST for the detection of gamma-ray bursts
    • 

    corecore