153 research outputs found

    Survival of ice nucleation-active and genetically engineered inactive strains of Pseudomonas syringae

    Full text link
    The survival of ice nucleation-active (INA) and genetically engineered non-INA strains of Pseudomonas syringae was compared under starvation and freezing conditions. In starvation experiments, both strains displayed similar survival curves and recovery from starvation was nearly identical for the two strains. In freezing experiments, oat seedlings colonized by each strain were subjected to freezing temperatures. Populations of the INA strain increased 15-fold in the 18 hours after oat plants incurred frost damage at {dollar}-{dollar}5 and {dollar}-{dollar}12{dollar}\sp\circ{dollar}C. Plants colonized by the non-INA strain were undamaged at {dollar}-{dollar}5{dollar}\sp\circ{dollar}C and exhibited no changes in population size. As temperatures were lowered, plants colonized by the non-INA strain suffered increased frost damage concomitant with bacterial population increases. At {dollar}-{dollar}12{dollar}\sp\circ{dollar}C, both strains behaved identically. The data show a relationship between frost damage to plants and subsequent increased bacterial population size, indicating a potential competitive advantage for INA strains of P. syringae in mild freezing environments

    Evaluation of the Biological Sampling Kit (BiSKit) for Large-Area Surface Sampling

    Full text link
    Current surface sampling methods for microbial contaminants are designed to sample small areas and utilize culture analysis. The total number of microbes recovered is low because a small area is sampled, making detection of a potential pathogen more difficult. Furthermore, sampling of small areas requires a greater number of samples to be collected, which delays the reporting of results, taxes laboratory resources and staffing, and increases analysis costs. A new biological surface sampling method, the Biological Sampling Kit (BiSKit), designed to sample large areas and to be compatible with testing with a variety of technologies, including PCR and immunoassay, was evaluated and compared to other surface sampling strategies. In experimental room trials, wood laminate and metal surfaces were contaminated by aerosolization of Bacillus atrophaeus spores, a simulant for Bacillus anthracis, into the room, followed by settling of the spores onto the test surfaces. The surfaces were sampled with the BiSKit, a cotton-based swab, and a foam-based swab. Samples were analyzed by culturing, quantitative PCR, and immunological assays. The results showed that the large surface area (1 m2) sampled with the BiSKit resulted in concentrations of B. atrophaeus in samples that were up to 10-fold higher than the concentrations obtained with the other methods tested. A comparison of wet and dry sampling with the BiSKit indicated that dry sampling was more efficient (efficiency, 18.4%) than wet sampling (efficiency, 11.3%). The sensitivities of detection of B. atrophaeus on metal surfaces were 42 ± 5.8 CFU/m2 for wet sampling and 100.5 ± 10.2 CFU/m2 for dry sampling. These results demonstrate that the use of a sampling device capable of sampling larger areas results in higher sensitivity than that obtained with currently available methods and has the advantage of sampling larger areas, thus requiring collection of fewer samples per site

    Interaction of the Streptomyces Wbl protein WhiD with the principal sigma factor σHrdB depends on the WhiD [4Fe-4S] cluster

    Get PDF
    The bacterial protein WhiD belongs to the Wbl family of iron–sulfur [Fe-S] proteins present only in the actinomycetes. In Streptomyces coelicolor, it is required for the late stages of sporulation, but precisely how it functions is unknown. Here, we report results from in vitro and in vivo experiments with WhiD from Streptomyces venezuelae (SvWhiD), which differs from S. coelicolor WhiD (ScWhiD) only at the C terminus. We observed that, like ScWhiD and other Wbl proteins, SvWhiD binds a [4Fe-4S] cluster that is moderately sensitive to O2 and highly sensitive to nitric oxide (NO). However, although all previous studies have reported that Wbl proteins are monomers, we found that SvWhiD exists in a monomer–dimer equilibrium associated with its unusual C-terminal extension. Several Wbl proteins of Mycobacterium tuberculosis are known to interact with its principal sigma factor SigA. Using bacterial two-hybrid, gel filtration, and MS analyses, we demonstrate that SvWhiD interacts with domain 4 of the principal sigma factor of Streptomyces, σHrdB (σHrdB4). Using MS, we determined the dissociation constant (Kd) for the SvWhiD–σHrdB4 complex as ~0.7 μM, consistent with a relatively tight binding interaction. We found that complex formation was cluster dependent and that a reaction with NO, which was complete at 8–10 NO molecules per cluster, resulted in dissociation into the separate proteins. The SvWhiD [4Fe-4S] cluster was significantly less sensitive to reaction with O2 and NO when SvWhiD was bound to σHrdB4, consistent with protection of the cluster in the complex

    The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family.

    Get PDF
    The bldC locus, required for formation of aerial hyphae in Streptomyces coelicolor, was localized by map-based cloning to the overlap between cosmids D17 and D25 of a minimal ordered library. Subcloning and sequencing showed that bldC encodes a member of a previously unrecognized family of small (58- to 78-residue) DNA-binding proteins, related to the DNA-binding domains of the MerR family of transcriptional activators. BldC family members are found in a wide range of gram-positive and gram-negative bacteria. Constructed {Delta}bldC mutants were defective in differentiation and antibiotic production. They failed to form an aerial mycelium on minimal medium and showed severe delays in aerial mycelium formation on rich medium. In addition, they failed to produce the polyketide antibiotic actinorhodin, and bldC was shown to be required for normal and sustained transcription of the pathway-specific activator gene actII-orf4. Although {Delta}bldC mutants produced the tripyrrole antibiotic undecylprodigiosin, transcripts of the pathway-specific activator gene (redD) were reduced to almost undetectable levels after 48 h in the bldC mutant, in contrast to the bldC+ parent strain in which redD transcription continued during aerial mycelium formation and sporulation. This suggests that bldC may be required for maintenance of redD transcription during differentiation. bldC is expressed from a single promoter. S1 nuclease protection assays and immunoblotting showed that bldC is constitutively expressed and that transcription of bldC does not depend on any of the other known bld genes. The bldC18 mutation that originally defined the locus causes a Y49C substitution that results in instability of the protein

    DevA, a GntR-like transcriptional regulator required for development in streptomyces coelicolor

    Get PDF
    The gram-positive filamentous bacterium Streptomyces coelicolor has a complex developmental cycle with three distinct phases: growth of the substrate mycelium, development of reproductive structures called aerial hyphae, and differentiation of these aerial filaments into long chains of exospores. During a transposon mutagenesis screen, we identified a novel gene (devA) required for proper development. The devA mutant produced only rare aerial hyphae, and those that were produced developed aberrant spore chains that were much shorter than wild-type chains and had misplaced septa. devA encodes a member of the GntR superfamily, a class of transcriptional regulators that typically respond to metabolite effector molecules. devA forms an operon with the downstream gene devB, which encodes a putative hydrolase that is also required for aerial mycelium formation on R5 medium. S1 nuclease protection analysis showed that transcription from the single devA promoter was temporally associated with vegetative growth, and enhanced green fluorescent protein transcriptional fusions showed that transcription was spatially confined to the substrate hyphae in the wild type. In contrast, devAB transcript levels were dramatically upregulated in a devA mutant and the devA promoter was also active in aerial hyphae and spores in this background, suggesting that DevA might negatively regulate its own production. This suggestion was confirmed by gel mobility shift assays that showed that DevA binds its own promoter region in vitro

    Characterization of Microbial Activity

    Full text link
    The overall goal of this study is to investigate the phenomena that affect the fate and transport of radionuclides in the environment. The objective of this task, “Characterization of Microbial Activity”, is to develop a molecular biological method for the characterization of the microbial population indigenous to the Yucca Mountain Project site, with emphasis in detection and measurement of species or groups of microorganisms that could be involved in actinide and/or metal reduction, and subsurface transport. Subtasks consist of QA planning and preparation, and literature review. This task is part of a cooperative agreement between the UNLV Research Foundation and the U.S. Department of Energy (#DE-FC28-04RW12237) titled “Yucca Mountain Groundwater Characterization”

    Microbial Contamination on Ambulance Surfaces: A Systematic Literature Review

    Get PDF
    Healthcare-associated infections (HAIs) are infections that patients acquire while receiving medical treatment in a healthcare facility. During ambulatory transport, the patient may be exposed to pathogens transmitted from emergency medical service (EMS) personnel or EMS surfaces. The aim of this study was to determine whether organisms commonly associated with HAIs have been detected on surfaces in the patient-care compartment of ambulances. Five electronic databases – PubMed, Scopus, Web of Science, Embase and Google Scholar were used to search for articles using inclusion and exclusion criteria following the PRISMA checklist. Inclusion criteria consisted of articles published in English, between 2009 and 2020, had positive samples collected from the patient-care compartment of a ground ambulance, and reported sample collection methods of either swab sampling and/or Replicate Organism Detection and Counting (RODAC) contact plates. Studies not meeting these criteria were excluded from this review. From a total of 1376 articles identified, 16 were included in the review. Organisms associated with HAIs were commonly detected in the patient-care compartment of ambulances across a variety of different surfaces, including blood pressure cuffs, oxygen apparatuses, and areas of patient stretchers. A high prevalence of pathogenic bacteria in ambulances suggests that standard protocols related to cleaning compliance may not be effective. The primary recommendation is that designated subject matter experts in infection prevention should be incorporated as liaisons in the pre-hospital setting, acting as a link between the pre-hospital (e.g., ambulance transport) and hospital environments

    Prevalence and Antimicrobial Susceptibility of Methicillin-resistant Staphylococcus aureus in Pregnant Women and Their Newborns in Las Vegas, Nevada

    Full text link
    Colonization and infection by resistant strains of Staphylococcus aureus are being reported in epidemic proportions. The goal of this study was to determine the local prevalence of methicillin-resistant Staphylococcus aureus (MRSA) colonization in pregnant women in southern Nevada and how it correlates with colonization and infection of their neonates. Signed consent was obtained, and a brief questionnaire was administered by the medical staff to each pregnant woman to collect demographic data and pertinent medical, family and social history. Nasal and vaginal specimens were obtained from pregnant women at ≥35 weeks gestation, and nasal and umbilicus specimens were obtained from their newborns. Specimens were cultured onto two selective media for S. aureus and MRSA. Potential MRSA isolates were further evaluated for susceptibility to antibiotics. Specimens from 307 pregnant women and 174 neonates were collected, resulting in 172 mother-neonate paired specimens. A total of 278 questionnaires were received from study participants. MRSA prevalence in pregnant women was 1.0% and 0.3% for nasal and vaginal specimens, respectively. The MRSA prevalence in neonates was 0% and 0.6% for nasal and umbilical specimens, respectively. Four different antimicrobial susceptibility profiles were observed among the MRSA isolates. The results did not show transmission of MRSA from pregnant women to their newborns, or infections of newborns with MRSA. It is expected that the results of this study will inform future decisions on surveillance, treatment and prevention of MRSA infections in Nevada

    Prevalence and Antimicrobial Agent Susceptibility of Methicillin-resistant Staphylococcus aureus in Healthy Pediatric Outpatients in Las Vegas

    Full text link
    Colonization and infection by community-associated resistant strains of Staphylococcus aureus are being reported in epidemic proportions. The purpose of this study was to determine the local prevalence of methicillin-resistant Staphylococcus aureus (MRSA) colonization in children and to characterize the MRSA isolates in the laboratory with regard to antimicrobial agent susceptibility patterns, and the presence of the mecA and the Panton-Valentine leukocidin (PVL) genes. Nasal swabs were collected at two pediatric clinics from a total of 505 children during health maintenance visits. A brief questionnaire was administered to collect demographic data and pertinent medical, family, and social history. Samples were cultured onto 2 selective media for S. aureus and MRSA. Potential MRSA isolates were further evaluated by real-time polymerase chain reaction (PCR), and for susceptibility to eight antibiotics by disk diffusion. Culture results showed that MRSA was present in 15 of the 505 specimens (3.0%). Six different antimicrobial susceptibility profiles were observed among the MRSA isolates. PCR amplification results showed that all 15 MRSA isolates were positive for the presence of the mecA gene, and 10 MRSA isolates contained the PVL gene. Understanding local prevalence rates and the role of colonization in infection are needed to develop effective interventions to reduce MRSA infections

    Surface, Water and Air Biocharacterization - A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    Get PDF
    A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft (SWAB) will use advanced molecular techniques to comprehensively evaluate microbes on board the space station, including pathogens (organisms that may cause disease). It also will track changes in the microbial community as spacecraft visit the station and new station modules are added. This study will allow an assessment of the risk of microbes to the crew and the spacecraft. Research Summary: Previous microbial analysis of spacecraft only identify microorganisms that will grow in culture, omitting greater than 90% of all microorganisms including pathogens such as Legionella (the bacterium which causes Legionnaires' disease) and Cryptosporidium (a parasite common in contaminated water) The incidence of potent allergens, such as dust mites, has never been systematically studied in spacecraft environments and microbial toxins have not been previously monitored. This study will use modern molecular techniques to identify microorganisms and allergens. Direct sampling of the ISS allows identification of the microbial communities present, and determination of whether these change or mutate over time. SWAB complements the nominal ISS environmental monitoring by providing a comparison of analyses from current media-based and advanced molecular-based technologies
    corecore