3,601 research outputs found

    Effects of lipids on the water sorption, glass transition and structural strength of carbohydrate-protein systems

    Get PDF
    peer-reviewedEncapsulant systems are gaining wide practical interest due to their functional and nutritional properties. This paper was focusing on understanding structural relaxations in that systems near glass transition temperature. Freeze-dried trehalose-whey protein isolate-sunflower oil systems with various ratios of the last were used as a carbohydrate-protein-lipid food model. The Guggenheim-Anderson-de Boer (GAB) water sorption relationship was used as a tool to model water sorption isotherms. The glass transition temperature was obtained by differential scanning calorimetry (DSC). Structural α-relaxation temperatures were measured by dynamical mechanical analyses (DMA), dielectric analysis (DEA) and combined to cover a broad range for strength assessment. The microstructure was characterized by optical light microscopy, confocal laser scanning microscopy and scanning electron microscopy. The C1 and C2 constants for Williams-Landel-Ferry (WLF) equation and structural strength parameter were calculated for each system. The effect of sunflower oil and water contents on strength of carbohydrate-protein system was analyzed. Strength shows decreasing with increasing of lipid concentration in the mixtures and more complex dependence on the water content in a system.This investigation was supported by the Food Institutional Research Measure (FIRM) project “Formulation and Design for Food Structure and Stability” funded by the Department of Agriculture, Food and Marine (11-F-001), coordinated by prof. Y.H. Roos, UCC, Ireland and by the Food Institutional Research Measure (FIRM) project “Developing the next generation of high protein spray dried dairy powders with enhanced hydration properties” (15-F-679) funded by the Department of Agriculture, Food and Marine, coordinated by Dr. Mark Auty, Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland

    Robust-to-loss entanglement generation using a quantum plasmonic nanoparticle array

    Full text link
    We introduce a scheme for generating entanglement between two quantum dots using a plasmonic waveguide made from an array of metal nanoparticles. We show that the scheme is robust to loss, enabling it to work over long distance plasmonic nanoparticle arrays, as well as in the presence of other imperfections such as the detuning of the energy levels of the quantum dots. The scheme represents an alternative strategy to the previously introduced dissipative driven schemes for generating entanglement in plasmonic systems. Here, the entanglement is generated by using dipole-induced interference effects and detection-based postselection. Thus, contrary to the widely held view that loss is major problem for quantum plasmonic systems, we provide a robust-to-loss entanglement generation scheme that could be used as a versatile building block for quantum state engineering and control at the nanoscale.Comment: 32 pages, 11 figure

    Photoluminescence modification by high-order photonic band with abnormal dispersion in ZnO inverse opal

    Full text link
    We measured the angle- and polarization-resolved reflection and photoluminescence spectra of ZnO inverse opals. Significant enhancement of spontaneous emission is observed. The enhanced emission not only has good directionality but also can be linearly polarized. A detailed theoretical analysis and numerical simulation reveal that such enhancement is caused by the abnormal dispersion of a high-order photonic band. The frozen mode at a stationary inflection point of a dispersion curve can strongly modify the intensity, directionality and polarization of spontaneous emission.Comment: 22 pages, 11 figures, figures modified, references added, more explanation adde

    Spike Oscillations

    Get PDF
    According to Belinskii, Khalatnikov and Lifshitz (BKL), a generic spacelike singularity is characterized by asymptotic locality: Asymptotically, toward the singularity, each spatial point evolves independently from its neighbors, in an oscillatory manner that is represented by a sequence of Bianchi type I and II vacuum models. Recent investigations support a modified conjecture: The formation of spatial structures (`spikes') breaks asymptotic locality. The complete description of a generic spacelike singularity involves spike oscillations, which are described by sequences of Bianchi type I and certain inhomogeneous vacuum models. In this paper we describe how BKL and spike oscillations arise from concatenations of exact solutions in a Hubble-normalized state space setting, suggesting the existence of hidden symmetries and showing that the results of BKL are part of a greater picture.Comment: 38 pages, 14 figure

    MAX 4 and MAX 5 CMB anisotropy measurement constraints on open and flat-Lambda CDM cosmogonies

    Full text link
    We account for experimental and observational uncertainties in likelihood analyses of cosmic microwave background (CMB) anisotropy data from the MAX 4 and MAX 5 experiments. These analyses use CMB anisotropy spectra predicted in open and spatially-flat Lambda cold dark matter cosmogonies. Amongst the models considered, the combined MAX data set is most consistent with the CMB anisotropy shape in Omega_0 ~ 0.1-0.2 open models and less so with that in old (t_0 >~ 15 - 16 Gyr, i.e., low h), high baryon density (Omega_B >~ 0.0175/h^2), low density (Omega_0 ~ 0.2 - 0.4), flat-Lambda models. The MAX data alone do not rule out any of the models we consider at the 2-sigma level. Model normalizations deduced from the combined MAX data are consistent with those drawn from the UCSB South Pole 1994 data, except for the flat bandpower model where MAX favours a higher normalization. The combined MAX data normalization for open models with Omega_0 ~ 0.1-0.2 is higher than the upper 2-sigma value of the DMR normalization. The combined MAX data normalization for old (low h), high baryon density, low-density flat-Lambda models is below the lower 2-sigma value of the DMR normalization. Open models with Omega_0 ~ 0.4-0.5 are not far from the shape most favoured by the MAX data, and for these models the MAX and DMR normalizations overlap. The MAX and DMR normalizations also overlap for Omega_0 = 1 and some higher h, lower Omega_B, low-density flat-Lambda models.Comment: Latex, 37 pages, uses aasms4 styl

    Elevated troponin and myocardial infarction in the intensive care unit: a prospective study

    Get PDF
    INTRODUCTION: Elevated troponin levels indicate myocardial injury but may occur in critically ill patients without evidence of myocardial ischemia. An elevated troponin alone cannot establish a diagnosis of myocardial infarction (MI), yet the optimal methods for diagnosing MI in the intensive care unit (ICU) are not established. The study objective was to estimate the frequency of MI using troponin T measurements, 12-lead electrocardiograms (ECGs) and echocardiography, and to examine the association of elevated troponin and MI with ICU and hospital mortality and length of stay. METHOD: In this 2-month single centre prospective cohort study, all consecutive patients admitted to our medical-surgical ICU were classified in duplicate by two investigators as having MI or no MI based on troponin, ECGs and echocardiograms obtained during the ICU stay. The diagnosis of MI was based on an adaptation of the joint European Society of Cardiology/American College of Cardiology definition: a typical rise or fall of an elevated troponin measurement, in addition to ischemic symptoms, ischemic ECG changes, a coronary artery intervention, or a new cardiac wall motion abnormality. RESULTS: We screened 117 ICU admissions and enrolled 115 predominantly medical patients. Of these, 93 (80.9%) had at least one ECG and one troponin; 44 of these 93 (47.3%) had at least one elevated troponin and 24 (25.8%) had an MI. Patients with MI had significantly higher mortality in the ICU (37.5% versus 17.6%; P = 0.050) and hospital (50.0% versus 22.0%; P = 0.010) than those without MI. After adjusting for Acute Physiology and Chronic Health Evaluation II score and need for inotropes or vasopressors, MI was an independent predictor of hospital mortality (odds ratio 3.22, 95% confidence interval 1.04–9.96). The presence of an elevated troponin (among those patients in whom troponin was measured) was not independently predictive of ICU or hospital mortality. CONCLUSION: In this study, 47% of critically ill patients had an elevated troponin but only 26% of these met criteria for MI. An elevated troponin without ischemic ECG changes was not associated with adverse outcomes; however, MI in the ICU setting was an independent predictor of hospital mortality
    corecore