5,204 research outputs found

    Development of the Australian Ageing Semantic Differential AASD), a novel instrument for measurement of medical student attitudes towards older people

    Get PDF
    Attitudes of Australian medical students towards older people are important, as they can influence clinical practice. Initially I aimed to measure student attitude change after curriculum innovation. Literature review of Australian medical student attitudes revealed a gap for a valid, contemporary measure, inspiring the AASD. Review of international measures of student attitude identified semantic differential as the preferred instrument-type. A qualitative study of 151 medical students at the Universities of Wollongong (UOW) and Sydney (USYD) produced opposite word pairs for the AASD. The AASD was piloted at the University of New South Wales (UNSW), (n=140, response rate 77%). Removal of a redundant item pair resulted in a 19-item instrument (Cronbach’s α = 0.84). An AASD survey of New South Wales (NSW) medical students (n=321, response rate 72.6%) at UNSW, USYD, and UOW revealed: 1) A four-factor solution on exploratory factor analysis (Instrumentality (I), Personal Appeal (PA), Experience (E) and Sociability (S)), 2) No sequencing bias, 3) Cronbach’s α = 0.86, and 4) A positive mean AASD score (73.2/114), positive mean scores for three factors (PA, E and S) and negative mean I score. Female students had a significantly higher mean E score. Confirmatory factor analysis (CFA) demonstrated adequacy of fit for AASD survey data from outside NSW to our four-factor model. Melbourne University, University of Western Australia and University of Adelaide students (n=188, response rate 79%) had a mean AASD score (72.8/114) comparable to NSW data. The AASD is a reliable and generalisable instrument for measurement of Australian medical student attitudes towards older people, with face and structural validity. Deeper knowledge, within four factors of attitude, may be obtained from future medical education research employing the AASD

    A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: The Group Catalog

    Full text link
    With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately-sampled fields. Using a group finding algorithm, we find 210 groups with at least five member galaxies; the median number of members is eight. Our sample spans redshifts of 0.04 ≤zgrp≤\le z_{grp} \le 0.76 with a median of 0.31, including 174 groups with 0.1<zgrp<0.60.1 < z_{grp} < 0.6. Groups have radial velocity dispersions of 60 ≤σgrp≤\le \sigma_{grp} \le 1200 km s−1^{-1} with a median of 350 km s−1^{-1}. We also discover a supergroup in field B0712+472 at z=z = 0.29 consisting of three main groups. We recover groups similar to ∼\sim 85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically 1) the distribution of σgrp\sigma_{grp}, 2) the fraction of all sample galaxies that are group members, and 3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. There are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive (σgrp≥\sigma_{grp} \ge 500 km s−1^{-1}) group or group candidate projected within 2′^{\prime} of the lens.Comment: 87 pages, 8 figures, a version of this was published in Ap

    A new approach to generating research-quality data through citizen science: The USA National Phenology Monitoring System

    Get PDF
    Phenology is one of the most sensitive biological responses to climate change, and recent changes in phenology have the potential to shake up ecosystems. In some cases, it appears they already are. Thus, for ecological reasons it is critical that we improve our understanding of species&#x2019; phenologies and how these phenologies are responding to recent, rapid climate change. Phenological events like flowering and bird migrations are easy to observe, culturally important, and, at a fundamental level, naturally inspire human curiosity&#x2014; thus providing an excellent opportunity to engage citizen scientists. The USA National Phenology Network has recently initiated a national effort to encourage people at different levels of expertise&#x2014;from backyard naturalists to professional scientists&#x2014;to observe phenological events and contribute to a national database that will be used to greatly improve our understanding of spatio-temporal variation in phenology and associated phenological responses to climate change.&#xd;&#xa;&#xd;&#xa;Traditional phenological observation protocols identify specific dates at which individual phenological events are observed. The scientific usefulness of long-term phenological observations could be improved with a more carefully structured protocol. At the USA-NPN we have developed a new approach that directs observers to record each day that they observe an individual plant, and to assess and report the state of specific life stages (or phenophases) as occurring or not occurring on that plant for each observation date. Evaluation is phrased in terms of simple, easy-to-understand, questions (e.g. &#x201c;Do you see open flowers?&#x201d;), which makes it very appropriate for a citizen science audience. From this method, a rich dataset of phenological metrics can be extracted, including the duration of a phenophase (e.g. open flowers), the beginning and end points of a phenophase (e.g. traditional phenological events such as first flower and last flower), multiple distinct occurrences of phenophases within a single growing season (e.g multiple flowering events, common in drought-prone regions), as well as quantification of sampling frequency and observational uncertainties. These features greatly enhance the utility of the resulting data for statistical analyses addressing questions such as how phenological events vary in time and space, and in response to global change. This new protocol is an important step forward, and its widespread adoption will increase the scientific value of data collected by citizen scientists.&#xd;&#xa

    Human genomic DNA quantitation system, H-Quant: Development and validation for use in forensic casework

    Get PDF
    The human DNA quantification (H-Quant) system, developed for use in human identification, enables quantitation of human genomic DNA in biological samples. The assay is based on real-time amplification of AluYb8 insertions in hominoid primates. The relatively high copy number of subfamily-specific Alu repeats in the human genome enables quantification of very small amounts of human DNA. The oligonucleotide primers present in H-Quant are specific for human DNA and closely related great apes. During the real-time PCR, the SYBR® Green I dye binds to the DNA that is synthesized by the human-specific AluYb8 oligonucleotide primers. The fluorescence of the bound SYBR® Green I dye is measured at the end of each PCR cycle. The cycle at which the fluorescence crosses the chosen threshold correlates to the quantity of amplifiable DNA in that sample. The minimal sensitivity of the H-Quant system is 7.6 pg/μL of human DNA. The amplicon generated in the H-Quant assay is 216 bp, which is within the same range of the common amplifiable short tandem repeat (STR) amplicons. This size amplicon enables quantitation of amplifiable DNA as opposed to a quantitation of degraded or nonamplifiable DNA of smaller sizes. Development and validation studies were performed on the 7500 real-time PCR system following the Quality Assurance Standards for Forensic DNA Testing Laboratories. Copyright © 2006 by American Academy of Forensic Sciences

    Moderate Resolution Spitzer Infrared Spectrograph (IRS) Observations of M, L, and T Dwarfs

    Full text link
    We present 10 - 19 um moderate resolution spectra of ten M dwarfs, one L dwarf, and two T dwarf systems obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope. The IRS allows us to examine molecular spectroscopic features/lines at moderate spectral resolution in a heretofore untapped wavelength regime. These R~600 spectra allow for a more detailed examination of clouds, non-equilibrium chemistry, as well as the molecular features of H2O, NH3, and other trace molecular species that are the hallmarks of these objects. A cloud-free model best fits our mid-infrared spectrum of the T1 dwarf epsilon Indi Ba, and we find that the NH3 feature in epsilon Indi Bb is best explained by a non-equilibrium abundance due to vertical transport in its atmosphere. We examined a set of objects (mostly M dwarfs) in multiple systems to look for evidence of emission features, which might indicate an atmospheric temperature inversion, as well as trace molecular species; however, we found no evidence of either.Comment: 19 pages, 7 figures, accepted ApJ 1/12/0

    A Merger Scenario for the Dynamics of Abell 665

    Get PDF
    We present new redshift measurements for 55 galaxies in the vicinity of the rich galaxy cluster Abell 665. When combined with results from the literature, we have good velocity measurements for a sample of 77 confirmed cluster members from which we derive the cluster's redshift z=0.1829 +/- 0.0005 and line-of-sight velocity dispersion of 1390 +/- 120 km/s. Our analysis of the kinematical and spatial data for the subset of galaxies located within the central 750 kpc reveals only subtle evidence for substructure and non-Gaussianity in the velocity distribution. We find that the brightest cluster member is not moving significantly relative to the other galaxies near the center of the cluster. On the other hand, our deep ROSAT high resolution image of A665 shows strong evidence for isophotal twisting and centroid variation, thereby confirming previous suggestions of significant substructure in the hot X-ray--emitting intracluster gas. In light of this evident substructure, we have compared the optical velocity data with N-body simulations of head-on cluster mergers. We find that a merger of two similar mass subclusters (mass ratios of 1:1 or 1:2) seen close to the time of core-crossing produces velocity distributions that are consistent with that observed.Comment: 30 pages and 7 figures. Accepted by the Astrophysical Journal Full resoultion figures 1 and 3 available in postscript at http://www.physics.rutgers.edu/~percy/A665paper.htm
    • …
    corecore