402 research outputs found

    Uncovering trends in gene naming

    Get PDF
    A survey of unusual gene names reveals trends underlying their choice

    An efficient pseudomedian filter for tiling microrrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a <it>O</it>(<it>n</it><sup>2</sup>log<it>n</it>) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution.</p> <p>Results</p> <p>We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of <it>n </it>numbers to <it>O</it>(<it>n</it>log<it>n</it>) from <it>O</it>(<it>n</it><sup>2</sup>log<it>n</it>). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple <it>O</it>(log <it>n</it>) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets.</p> <p>Conclusion</p> <p>Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic feature density. This result not only speeds the current standard analyses, but also makes possible ones where many iterations of the filter may be required, such as might be required in a bootstrap or parameter estimation setting. Source code and executables are available at <url>http://tiling.gersteinlab.org/pseudomedian/</url>.</p

    Improved prediction of ligand-protein binding affinities by meta-modeling

    Full text link
    The accurate screening of candidate drug ligands against target proteins through computational approaches is of prime interest to drug development efforts, as filtering potential candidates would save time and expenses for finding drugs. Such virtual screening depends in part on methods to predict the binding affinity between ligands and proteins. Given many computational models for binding affinity prediction with varying results across targets, we herein develop a meta-modeling framework by integrating published empirical structure-based docking and sequence-based deep learning models. In building this framework, we evaluate many combinations of individual models, training databases, and linear and nonlinear meta-modeling approaches. We show that many of our meta-models significantly improve affinity predictions over individual base models. Our best meta-models achieve comparable performance to state-of-the-art exclusively structure-based deep learning tools. Overall, we demonstrate that diverse modeling approaches can be ensembled together to gain substantial improvement in binding affinity prediction while allowing control over input features such as physicochemical properties or molecular descriptors.Comment: 61 pages, 3 main tables, 6 main figures, 6 supplementary figures, and supporting information. For 8 supplementary tables and code, see https://github.com/Lee1701/Lee2023

    Determinants of Protein Abundance and Translation Efficiency in S. cerevisiae

    Get PDF
    The translation efficiency of most Saccharomyces cerevisiae genes remains fairly constant across poor and rich growth media. This observation has led us to revisit the available data and to examine the potential utility of a protein abundance predictor in reinterpreting existing mRNA expression data. Our predictor is based on large-scale data of mRNA levels, the tRNA adaptation index, and the evolutionary rate. It attains a correlation of 0.76 with experimentally determined protein abundance levels on unseen data and successfully cross-predicts protein abundance levels in another yeast species (Schizosaccharomyces pombe). The predicted abundance levels of proteins in known S. cerevisiae complexes, and of interacting proteins, are significantly more coherent than their corresponding mRNA expression levels. Analysis of gene expression measurement experiments using the predicted protein abundance levels yields new insights that are not readily discernable when clustering the corresponding mRNA expression levels. Comparing protein abundance levels across poor and rich media, we find a general trend for homeostatic regulation where transcription and translation change in a reciprocal manner. This phenomenon is more prominent near origins of replications. Our analysis shows that in parallel to the adaptation occurring at the tRNA level via the codon bias, proteins do undergo a complementary adaptation at the amino acid level to further increase their abundance

    The CRIT framework for identifying cross patterns in systems biology and application to chemogenomics

    Get PDF
    Biological data is often tabular but finding statistically valid connections between entities in a sequence of tables can be problematic - for example, connecting particular entities in a drug property table to gene properties in a second table, using a third table associating genes with drugs. Here we present an approach (CRIT) to find connections such as these and show how it can be applied in a variety of genomic contexts including chemogenomics data

    Genome-wide analysis of chromatin features identifies histone modification sensitive and insensitive yeast transcription factors

    Get PDF
    We propose a method to predict yeast transcription factor targets by integrating histone modification profiles with transcription factor binding motif information. It shows improved predictive power compared to a binding motif-only method. We find that transcription factors cluster into histone-sensitive and -insensitive classes. The target genes of histone-sensitive transcription factors have stronger histone modification signals than those of histone-insensitive ones. The two classes also differ in tendency to interact with histone modifiers, degree of connectivity in protein-protein interaction networks, position in the transcriptional regulation hierarchy, and in a number of additional features, indicating possible differences in their transcriptional regulation mechanisms

    Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification

    Get PDF
    A generic DNA microarray design applicable to any species would greatly benefit comparative genomics. We have addressed the feasibility of such a design by leveraging the great feature densities and relatively unbiased nature of genomic tiling microarrays. Specifically, we first divided each Homo sapiens Refseq-derived gene's spliced nucleotide sequence into all of its possible contiguous 25 nt subsequences. For each of these 25 nt subsequences, we searched a recent human transcript mapping experiment's probe design for the 25 nt probe sequence having the fewest mismatches with the subsequence, but that did not match the subsequence exactly. Signal intensities measured with each gene's nearest-neighbor features were subsequently averaged to predict their gene expression levels in each of the experiment's thirty-three hybridizations. We examined the fidelity of this approach in terms of both sensitivity and specificity for detecting actively transcribed genes, for transcriptional consistency between exons of the same gene, and for reproducibility between tiling array designs. Taken together, our results provide proof-of-principle for probing nucleic acid targets with off-target, nearest-neighbor features

    Not All Scale-Free Networks Are Born Equal: The Role of the Seed Graph in PPI Network Evolution

    Get PDF
    The (asymptotic) degree distributions of the best-known “scale-free” network models are all similar and are independent of the seed graph used; hence, it has been tempting to assume that networks generated by these models are generally similar. In this paper, we observe that several key topological features of such networks depend heavily on the specific model and the seed graph used. Furthermore, we show that starting with the “right” seed graph (typically a dense subgraph of the protein–protein interaction network analyzed), the duplication model captures many topological features of publicly available protein–protein interaction networks very well
    corecore