Improved prediction of ligand-protein binding affinities by meta-modeling

Abstract

The accurate screening of candidate drug ligands against target proteins through computational approaches is of prime interest to drug development efforts, as filtering potential candidates would save time and expenses for finding drugs. Such virtual screening depends in part on methods to predict the binding affinity between ligands and proteins. Given many computational models for binding affinity prediction with varying results across targets, we herein develop a meta-modeling framework by integrating published empirical structure-based docking and sequence-based deep learning models. In building this framework, we evaluate many combinations of individual models, training databases, and linear and nonlinear meta-modeling approaches. We show that many of our meta-models significantly improve affinity predictions over individual base models. Our best meta-models achieve comparable performance to state-of-the-art exclusively structure-based deep learning tools. Overall, we demonstrate that diverse modeling approaches can be ensembled together to gain substantial improvement in binding affinity prediction while allowing control over input features such as physicochemical properties or molecular descriptors.Comment: 61 pages, 3 main tables, 6 main figures, 6 supplementary figures, and supporting information. For 8 supplementary tables and code, see https://github.com/Lee1701/Lee2023

    Similar works

    Full text

    thumbnail-image

    Available Versions